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ABSTRACT: This article is the first in a series of publications that discuss the basics of
the writing of computer programs for simulating solid-state NMR experiments with static
and rotating samples. The present article gives an account of the relevant NMR theory
needed for writing NMR simulation computer codes. The concept of irreducible spherical
tensors is reviewed, as is how it may be used to construct Hamiltonians that represent the
various NMR interactions. The spin dynamics that links the Hamiltonian to the time
evolution of the nuclear spins and the detection of the NMR time-domain signal is
discussed for static and rotating solids, as well as the relationship between the form of the
Hamiltonian and the resulting NMR spectrum. © 2003 Wiley Periodicals, Inc. Concepts
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INTRODUCTION

The analysis of most NMR experiments relies on
numerical simulations. For example, numerical simu-
lations are needed for extracting information about
spin interaction parameters and molecular structure by
means of iterative fitting of calculated NMR re-
sponses to experimental data. Computer modeling of
experiments are also extensively used for testing and
optimizing new NMR methodologies: through a com-
puter program, it is straightforward to isolate and

study the relative importance of various parameters
affecting the NMR measurement. Such investigations
may prove difficult or even impossible to carry out
experimentally.

All NMR interactions have anisotropic contribu-
tions (1–6), which is clearly manifested in NMR
experiments with solid samples. The NMR response
of the interactions depends on the orientation of the
molecule (containing the nuclear spins under study)
with respect to the direction of the static magnetic
field. Experiments are usually performed on powders
comprising a large number of randomly oriented crys-
tallites. The resulting NMR spectrum is then a super-
position of the spectra from all crystallites. This gives
powder spectra with NMR resonances spread over a
large range of frequencies, as seen in Fig. 1(a).

In order to obtain high resolution NMR spectra
from powders, experimental manipulations of the
spins are often required, such as magic-angle spinning

Received 5 October 2001; revised 22 October 2002;
accepted 20 November 2002
Correspondence to: Dr. M. Edén; E-mail: mattias@physc.su.se

Concepts in Magnetic Resonance Part A, Vol. 17A(1) 117–154 (2003)

Published online in Wiley InterScience (www.interscience.wiley.
com). DOI 10.1002/cmr.a.10061
© 2003 Wiley Periodicals, Inc.

117



(MAS) and/or techniques involving high power radio
frequency (RF) field application (1–5, 7, 8). MAS is
based on the idea that because the anisotropic inter-
actions are orientation dependent, they may be re-
moved by rapidly rotating the sample about the axis of
the sample holder, which should be inclined at the
“magic angle” �m � arctan�2 with respect to the
static magnetic field direction. MAS diminishes the
effects of the anisotropic interactions; and if the sam-
ple rotation is fast enough, they are averaged out
completely, as shown in Fig. 1(d).

As a result of the time-dependent modulations,
combined with the anisotropic nature of the spin in-
teractions, numerical simulations of solid-state NMR
experiments are quite demanding and generally re-
quire different computational techniques than those
for isotropic liquids. Additional complications arise
when simulating NMR responses from powders, be-

cause the calculation must then incorporate powder
averaging, implying a summation of the signals from
a large number of molecular orientations.

Over the last few years, simulations of solid-state
NMR experiments have reached a high degree of
sophistication. It is possible to simulate NMR signals
by mimicking the experimental situation very closely,
using a minimum of assumptions. For example, pow-
der averaged MAS spectra from multiple-spin sys-
tems can be simulated in a few seconds or minutes on
a personal computer, taking all relevant interactions
of the spin system into account (9–14). Even powder
averaged spectra for 2-dimensional experiments in-
volving complex pulse sequences may be calculated
within 1 h (14–16 ). This is a result of steadily in-
creasing computer capabilities, combined with highly
efficient general-purpose computational methods that
have recently been introduced (10–13, 15, 17–20).
There are simulation packages available for various
solid-state NMR simulations (21–23). In particular,
two very sophisticated simulation platforms, GAMMA
(24, 25) and SIMPSON (14, 26), have found well-
spread public usage.

The present article is the first in a series that seeks
to outline how a numerical simulation program may
be written for calculating NMR time-domain signals
or frequency-domain spectra with emphasis on so-
called dynamically inhomogeneous cases as defined
by Maricq and Waugh (27). These correspond to
evolution of the nuclear spins under either a time-
independent Hamiltonian or a time-dependent Ham-
iltonian that commutes with itself at all times. This
applies, for instance, to isolated spins and hetero-
nuclear spin systems under MAS conditions. These
articles may also be of interest to the users of already
existing simulation software, because we discuss gen-
eral aspects of utility when executing simulation pro-
grams.

Writing a numerical simulation program requires
insight into the NMR theory underlying the descrip-
tion of the experiment, in particular, the form of the
Hamiltonian under which the spins evolve. Moreover,
it is necessary to have a systematic procedure for
constructing the spin Hamiltonian for any given ex-
periment. In this series of Concepts articles, we ad-
dress the problem using the irreducible spherical ten-
sor (IST) formalism (1–5, 28, 29). An explanation is
made on how the Hamiltonian may be formed as a
product of one IST (the “spatial tensor”) that depends
on the orientation of the molecule with respect to the
magnetic field and another IST that is represented by
spin operators. The IST formalism is highly suited for
describing the response of NMR interactions to rota-
tions of the sample, which is needed for the theoret-

Figure 1 The experimental 13C spectra of a powder of
99%-13C2-labeled glycine, acquired at a magnetic field of
9.4 T. High-power proton decoupling was employed during
the acquisition. (a) The spectrum of a static sample. (b–d)
Spectra for a sample rotating at the magic angle and re-
corded at a spinning frequency equal to (b) 2.50, (c) 5.30,
and (d) 10.00 kHz.
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ical, as well as numerical, treatment of MAS experi-
ments.

A numerical simulation program for calculating
the NMR time-domain signal or frequency-domain
spectrum comprises the following main parts:

1. Initialization. For numerical simulations, it is
first necessary to provide the program with in-
put data characterizing the spin system and its
interactions. Parameters describing the particu-
lar experimental situation are also required,
such as the MAS frequency. Furthermore, the
desired form of output of the calculation is
needed, for example, the spectral window and
frequency resolution. Simulations of complex
experiments may require a large amount of in-
put data. Once the necessary data are gathered,
the spatial tensors and spin operators are con-
structed, as discussed in later sections.

2. Spin dynamics calculation. This is the heart of
the simulation program, where typically 99% of
the computational time is spent and finally re-
sults in the calculated NMR response. Calculat-
ing “spin dynamics” means finding how the
spin density operator (which specifies the state
of an ensemble of spin systems) evolves in time
during the NMR experiment that is to be sim-
ulated. The nature of the spin dynamics is di-
rectly reflected in the NMR time-domain signal
and spectrum. This article outlines a spin dy-
namics theory, which is examined in detail for
spin systems evolving under dynamically inho-
mogeneous Hamiltonians. The relationship be-
tween the NMR spectrum and the particular
type of Hamiltonian (time independent as in the
case of a static solid or time periodic as in the
case of MAS) is also examined.

3. Postprocessing. The final part of the simulation
program may involve additional processing of
the calculated NMR signal, such as applying
broadening to the spectral peaks.

The numerical implementations of the spin dynam-
ics calculations and postprocessing of the NMR sig-
nals will be discussed in the following article. We
stress that this article only deals with calculation of
the NMR response from a single molecular orienta-
tion (i.e., a single crystal). Simulations of time signals
and spectra of powders require powder averaging.
This stage of the simulation will be included in a
following publication.

MATHEMATICAL CONCEPTS AND
GENERAL CONVENTIONS

This section reviews basic mathematical tools em-
ployed in the formulation of spin dynamics theory.
They are used later in the implementations of the
computer codes in subsequent articles. The following
references contain additional information on these
topics: diagonalization of operators and exponential
operators (2– 4, 6, 29, 30); Fourier transformation
(4, 6, 30); Euler angles, tensors, and rotations (1, 4,
5, 29).

Notation

Entities that may be represented as matrices (such as
tensors and vectors) are set in boldface letters. Vec-
tors are superscripted by single-headed arrows (e.g.,
n�) and tensors by double-headed arrows (e.g., A

7
). All

operators are superscripted by a circumflex (Îz).
Components of vectors and tensors are italicized

(e.g., Vz and Alm); and, if the tensor components
themselves are operators, they are set in bold letters
(e.g., T̂lm). We employ two alternative notations for
matrix elements: in the outline of numerical algo-
rithms, Ojk denotes the element of row j and column
k of the operator Ô, evaluated in some basis set; and
we also make frequent use of the Dirac (bracket)
formalism (2, 3, 29). For a given basis, the relation-
ship between the two notations is Ojk � �j�Ô�k�.

An object A represented in a coordinate system
(frame) F is denoted within brackets, and the frame
label is superscript: [A]F.

We also make a distinction between points in time,
denoted t, and time intervals (i.e., differences between
two points in time), denoted � (31).

Diagonalization of Operators

An Hermitian operator (2, 3, 6, 29) is invariant to
taking transpose and complex conjugate (together rep-
resented by the adjoint operation †)

Â � Â† [1]

Any Hermitian operator Â (e.g., the Hamiltonian Ĥ)
may be diagonalized, that is, brought into a represen-
tation such that all its matrix elements are zero, except
those on the diagonal. We denote this representation
Âdiag. The particular basis where the operator is diag-
onal is called the eigenbasis of the operator. For an
operator of dimensions � � �, the eigenbasis is
spanned by � orthonormal eigenstates (eigenvectors)
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of Â: {�1�, �2�, . . . , ���}. The orthonormality condi-
tion means that the scalar product between a state with
itself is one and that between any two different states
is zero:

�j�k� � 	
 j, k� � �1 if j � k
0 if j � k [2]

where 	 represents the Kronecker 	 function (32).
Each of the eigenstates of Â obeys the following
so-called eigenequation (2–4, 6, 29):

Â�j� � aj�j� [3]

It means that if the operator acts on one of its eigen-
states �j�, the outcome is the same state, multiplied by
a number aj, called the eigenvalue of Â that corre-
sponds to �j�.

To diagonalize Â, the operator that effects the
transformation Â 3 Âdiag is needed. This operator is
denoted X̂ and its matrix representation has the nor-
malized eigenstates of Â as columns. In addition, X̂ is
a unitary operator (29), which is defined as having the
adjoint operator as its inverse (i.e., X̂† � X̂�1), im-
plying that

X̂X̂† � X̂†X̂ � 1̂ [4]

where 1̂ is the unity operator, for which all matrix
elements are zero, except those on the diagonal:
�j�1̂�k� � 	( j, k). The diagonal matrix Âdiag may be
obtained from the following operator “sandwich”:

Âdiag � X̂†ÂX̂ [5]

� �
a1 0 0 · · · 0
0 a2 0 · · · 0
0 0 a3 · · · 0
···

···
···

· · ·
···

0 0 0 · · · a�

� [6]

A proof of Eq. [5] is given in Refs. (4, 29). Equation
[6] may be expressed in the Dirac formalism as a sum
of products of eigenvalues and projection operators.

Âdiag � �
j�1

�

aj�j��j� [7]

where each operator �j��j� projects a given state vector
onto the eigenstate �j� (2–4, 6, 29). We may check
that Eqs. [6] and [7] are equivalent by calculating the
kth element of Âdiag, that is, (Âdiag)kk � �k�Âdiag�k�.

Multiplying Eq. [7] from the left with �k� and from the
right with �k� gives

�k�Âdiag�k� � �k���
j�1

�

aj�j��j���k [8]

The Dirac formalism allows us to interpret each term
of the right-hand side either as aj�k� � �j��j� � �k� or as
a product of two scalar products aj�k�j� � �j�k� (29).
Using the latter interpretation gives

�k�Âdiag�k� � �
j�1

�

aj�k�j� � �j�k� [9]

� �
j�1

�

aj	
 j, k� [10]

From the orthonormality of the eigenstates (Eq. [2]),
all terms in the sum vanish, except for that with j �
k, and we get �k�Âdiag�k� � ak as expected.

Equation [5] may be used to transform an arbitrary
operator B̂ into the eigenbasis of Â according to (29)

B̂ 3 X̂†B̂X̂ [11]

Note, however, that unless Â and B̂ share the same
eigenbasis, the operator X̂†B̂X̂ is not represented by a
diagonal matrix (29).

Exponential Operators

In the following we frequently need to form the com-
plex exponential exp{iÂ} of an Hermitian operator
Â. Just as the exponential of a real or complex number
c may be calculated from a Taylor series

exp
c� � 1 � c �
1

2!
c2 �

1

3!
c3 � · · · �

1

N!
cN � · · ·

[12]

an exponential operator may formally be interpreted
as

exp
iÂ� � 1̂ � Â �
1

2!

iÂ�2 �

1

3!

iÂ�3

� · · · �
1

N!

iÂ�N � · · · [13]
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where Â2 � Â � Â, and so forth. How is a power of an
operator ÂN calculated for large N? Equation [5] is
helpful because, for example, it may be exploited to
obtain Â3 as follows:

Â3 � Â � Â � Â � 
X̂ÂdiagX̂
†�
X̂ÂdiagX̂

†�
X̂ÂdiagX̂
†�

[14]

The right-hand side may be simplified by exploiting
that X̂ is unitary and hence that the products X̂†X̂
cancel (Eq. [4]). Equation [14] then casts as

Â3 � X̂Âdiag
3 X̂† [15]

Note that whenever Âdiag is diagonal, it may be di-
rectly raised to any power N according to

Âdiag
N � �

a1
N 0 0 · · · 0

0 a2
N 0 · · · 0

0 0 a3
N · · · 0

··· 0 0 · · ·
···

0 0 0 · · · a�
N
� [16]

From this follows that Â3 is formed by first calculat-
ing Âdiag

3 and then multiplying it with X̂ from the left
and X̂† from the right.

When applying this strategy to Eq. [13], we obtain

exp
iÂ� � 1̂ � 
iX̂ÂdiagX̂
†� �

1

2!

iX̂ÂdiagX̂

†�2 � · · ·

�
1

N!

iX̂ÂdiagX̂

†�N � · · · [17]

� 1̂ � 
iX̂ÂdiagX̂
†� �

1

2!

iX̂Âdiag

2 X̂†� � · · ·

�
1

N!

iX̂Âdiag

N X̂†� � · · · [18]

Because each term is “sandwiched” by X̂ from the left
and by X̂† from the right, the sum may be factorized
as

exp
iÂ� � X̂�1̂ � iÂdiag �
1

2!

iÂdiag�

2

�· · · �
1

N!

iÂdiag�

N � · · ·�X̂† [19]

The sum in the parentheses may be identified, accord-
ing to Eq. [13], as the Taylor expansion of
exp{iÂdiag}. In analogy with Eq. [16], the operator

exp{iÂdiag} is represented by a diagonal matrix with
exponentials of eigenvalues on the diagonal:

exp
iÂdiag�

� �
exp
ia1� 0 0 · · · 0

0 exp
ia2� 0 · · · 0
0 0 exp
ia3� · · · 0
···

···
···

· · ·
···

0 0 0 · · · exp
ia��
�

[20]

Inserting this result into Eq. [19] gives the following
expression for the exponential operator exp{iÂ}:

exp
iÂ� � X̂ exp
iÂdiag�X̂
† [21]

If the operator Â is Hermitian, the corresponding
exponential operator exp{iÂ} is unitary (6, 29). It
follows that the inverse of the exponential operator is
given by exp{iÂ}�1 � exp{�iÂ}. This may be ver-
ified by exploiting Eqs. [1] and [4] as follows:

exp
iÂ��1 � 
exp
iÂ��† � exp

i�†Â†� � exp
�iÂ�

[22]

Equation [21] is the route for obtaining exponential
operators in numerical applications. The procedure to
calculate exp{iÂ} is as follows:

1. diagonalize operator Â (i.e., find its eigenvalues
and eigenvectors),

2. construct the matrix X̂ having the eigenvectors
of Â as columns,

3. calculate the matrix of complex exponentials of
the eigenvalues (Eq. [20]), and

4. form the product X̂ exp{iÂdiag}X̂† (Eq. [21]).

Fourier Series and Fourier Transforms

This section discusses basic concepts that are impor-
tant when processing NMR responses, as well as in
the mathematical formulation of the time evolution of
nuclear spin systems. Here we also define parameters
relevant for the experimental acquisition of NMR
time-domain signals.

Fourier Series. A real- or complex-valued function
f(t) is said to be periodic with a characteristic period
T, if it obeys f(t) � f(t � T) for all values of t. Here
we assume that the variable t represents time, which is
relevant for spin dynamics calculations and in the
acquisition of an experimental NMR time-domain
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signal. The period T is associated with a modulation
frequency �mod, which is inversely proportional to T:

�mod � 2�/T [23]

Since T is given in units of seconds, �mod is an
angular frequency given in rads per second. A fre-
quency � (Hz) is related to the corresponding angular
frequency � by

� � 2�� [24]

A periodic function may be expanded in a Fourier
series

f
t� � �
k��M/ 2

M/ 2

f
k�exp
ik�modt� [25]

where the time-independent coefficients f(k) are called
Fourier components (or Fourier coefficients). Equa-
tion [25] shows that f(t) may be expressed as a sum
over M � 1 Fourier components, each weighted by a
complex exponential function involving a harmonic
of �mod. The number of Fourier components required
to reproduce the function f depends on the nature of
its time dependence. In general, the more complicated
dependence on time, the larger the number M. The
value of M may sometimes extend to infinity. The
Fourier components of a periodic function f may be
calculated from the relationship

f
k� �
1

T �
0

T

dt f
t�exp
�ik�modt�;

k � �
M

2
, �

M

2
� 1, . . . ,

M

2
[26]

In the theoretical formalism outlined in later sec-
tions, we will encounter complex exponentials of pe-
riodic functions, such as g(t) � exp{if(t)}. Such
exponential functions are also periodic, that is,
exp{if(t � T)} � exp{if(t)}, and may consequently
be expanded in a Fourier series, similar to Eq. [25]:

exp
if 
t�� � �
k���

�

g
k�exp
ik�modt� [27]

Note, however, that even in the case of a finite number
of Fourier components in Eq. [25], the Fourier series

of g(t) generally comprise an infinite number of Fou-
rier components g(k).

Fourier Transforms. The Fourier transform (FT) is
used extensively in the processing of NMR experi-
ments: it converts an NMR time-domain signal s(t)
(amplitude as a function of time) into a frequency-
domain spectrum S(�) (amplitude as a function of
frequency). The actual conversion is defined mathe-
matically as an integration of the product
s(t)exp{�i�t} over all time points t

S
�� � 
2���1 �
��

�

dt S
t�exp
�i�t� [28]

A physical interpretation of the Fourier transform
procedure may be found in Ref. (6). This operation is
also invertible; the inverse Fourier transform (IFT) is
defined as

s
t� � �
��

�

d� S
��exp
i�t� [29]

It converts the frequency-domain spectrum S(�) into
the time-domain signal s(t) by an integration of the
product S(�)exp{i�t} over all frequencies �. The
interconversion between s(t) and S(�) by the Fourier
transform and inverse Fourier transform operations is
illustrated in Fig. 2 for the case of a simple NMR
signal.

Discrete Fourier Series and Fourier Transforms. In
practice, the experimentally acquired NMR time-do-
main signal is not continuous, but corresponds to a set
of q discrete time points tj and amplitudes s(tj): {tj,
s(tj)}. All information known about the function s(t)
is contained in its q discrete values. A discretely
sampled time signal is illustrated in Fig. 3. For prac-
tical reasons q is assumed to be even. The signal is
sampled over an acquisition interval �acq at the
equally spaced time points

tj � j�acq/q, j � 0, 1, 2, . . . , q � 1 [30]

The duration between two time points tj and tj�1 is
usually called the dwell time (note, however, that it is
a time interval ) and may be calculated from either of
the two following relationships:
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�dwell � �acq/q [31]

� 2�/�samp [32]

where the sampling frequency �samp corresponds to
the span of spectral frequencies (see Fig. 3).

The spectrum is obtained by a discrete Fourier
transformation procedure (discussed below) and com-
prises the same number of points as does the time-
domain signal. It corresponds to a set of frequency-
amplitude pairs {�k, ak}. The expression for the
amplitudes ak are defined below, and the spectral
coordinates are displaced around � � 0 and range
from the negative frequency ��samp/2 � �res to the
positive frequency ��samp/2. The qth frequency co-
ordinate is (rad s�1) given by

�k � k�res; k � �
q

2
� 1, �

q

2
� 2, . . . ,

q

2
[33]

The frequency-domain resolution �res corresponds to
the separation between two neighboring spectral co-
ordinates: �res � �k�1 � �k. It may be calculated by
dividing the spectral range �samp by the number of
points q

�res � �samp /q [34]

or, alternatively, from the inverse of the acquisition
interval

�res � 2�/�acq [35]

Note that �res has the same role in the frequency
domain as the “dwell time” (�dwell) has in the time
domain. The two entities are calculated from �acq and
�samp using closely related expressions: Eq. [31] is

Figure 2 (a) The NMR time-domain signal is converted
into (b) the frequency-domain spectrum by a Fourier trans-
form (FT). The reverse transformation is effected by an
inverse Fourier transform (IFT). In this case, the time-
domain signal is a sum of two components, shown in (c) and
(e), respectively. The corresponding spectra of the signals
are shown in (d) and (f), respectively. Note that (c) the
component with the higher oscillation frequency corre-
sponds to (d) the peak at the higher frequency in the spec-
trum. Generally, the NMR signals are complex, but for
simplicity, we have only displayed their real parts.

Figure 3 The relationship between parameters used when
acquiring an NMR time-domain signal. (a) The signal is
acquired at q discrete time points (in the present case, q �
32) with a duration �dwell between them. This results in a
total time span �acq, called the acquisition interval. (b)
Subsequent discrete Fourier transformation results in the
NMR frequency-domain spectrum, consisting of q frequency–
amplitude pairs. This extends over the frequency range
�samp, which is inversely proportional to �dwell (Eq. [32]).
The frequencies are spaced evenly in steps of the frequency
resolution �res, ranging from the most negative frequency
(left side of spectrum) � � ��samp /2 � �res to the most
positive value � � �samp /2 (right side of spectrum). The
frequency resolution is inversely proportional to the signal
acquisition interval �acq (Eq. [35]). The lines between the
points are only for visualization purposes and have no
physical significance.
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analogous to Eq. [34], whereas Eq. [32] is analogous
to Eq. [35].

From Eq. [35] it follows that the longer the exper-
imental acquisition interval, the finer the spectral res-
olution. Note that the convention used here for the
spectral range �samp includes the positive frequency
� � ��samp/2 but not the corresponding negative
value � � ��samp/2. In fact, the amplitudes at the
extreme positive and negative coordinates (i.e., a�q/ 2

and aq/ 2) are, by definition, equal. This follows from
the properties of the Fourier transform of discrete data
sets and is discussed in detail in Ref. (30). However,
in order to keep the same number of points (q) in both
the time and frequency domains, our convention is
simply to drop the most negative frequency coordi-
nate and use a slightly asymmetrical spectral range.
This has negligible consequences in practice, as long
as the frequency resolution �res is fine enough.

We point out that s(t) is generally not periodic in
time. However, functions that are sampled as discrete
points tj may always be expressed as a Fourier series
according to Eq. [25]. References (4) and (30) explain
the reasons for this property of discrete functions in
more detail.

The corresponding set of Fourier components {ak}
are obtained by a discrete Fourier transformation (30)
of the set {s(tj)} as follows:

ak � q�1 �
j�0

q�1

s
tj�exp
�i2�jk/q�;

k � �
q

2
� 1, �

q

2
� 2, . . . ,

q

2
[36]

The Fourier component ak corresponds to the spectral
amplitude at the frequency coordinate �k. Note that in
Eq. [36] the index j runs over all integers 0 � j �
q � 1 whereas the index k takes integer values in the
range �(q/ 2) � 1 � k � q/ 2.

As in the case of continuous functions, a discrete
inverse Fourier transform is defined to produce s(tj)
from the set of spectral amplitudes {ak} as follows:

s
tj� � �
k��q/ 2�1

q/ 2

akexp
i2�jk/q� [37]

We stress that we used angular frequencies for the
spectral coordinates in this section. If desired, these
may be converted into Hertz using Eq. [24].

Euler Angles and Rotation Operators

A counterclockwise rotation around an axis is defined
as positive and a clockwise rotation as negative. The

operator for a rotation by an angle � around an axis n�
is denoted R̂n(� ) and defined as (28, 29)

R̂n
�� � exp
�i�l̂� � n�� [38]

where �l̂ is the total angular momentum operator.
A rotation of any 3-dimensional object can be

specified by a sequence of three consecutive single-
axis rotations and may, therefore, be parameterized by
three axes and three corresponding angles. Here we
make use of passive rotations, which are transforma-
tions of the coordinate systems rather than the objects
themselves (4, 28, 29). The transformation of the
coordinate system F with basis vectors {x�F, y�F, z�F}
into the system F� � {x�F�, y�F�, z�F�} may be effected
by the following sequence of rotations:

R̂
�FF�, �FF�, �FF�� � R̂zF�

�FF��R̂yG


�FF��R̂zF

�FF��

[39]

Equation [39] may be interpreted as follows: first the
coordinate system is rotated around its z�F axis by an
angle �FF�. Then it is rotated around the y axis (here
denoted y�G) of the new system by an angle �FF�,
followed by a rotation around the z axis of the “final”
coordinate system F� by an angle �FF�. The rotation
is therefore parameterized by a triplet of Euler angles
[using the convention given on p. 21–22 of Ref. (28)]

�FF� � 
�FF�, �FF�, �FF�� [40]

where the angles take the values {0 � �FF� � 2�,
0 � �FF� � �, 0 � �FF� � 2�}. Note that the
subscripts FF� specify a transformation from system
F to system F� (although intermediate systems are
involved in each single-axis rotation). However, it
may be shown (28 ) that the same transformation can
be carried out by employing rotations solely around
the axes of the original coordinate system F, if the
order of rotations is reversed:

R̂
�FF�, �FF�, �FF�� � R̂zF

�FF��R̂yF


�FF��R̂zF

�FF��

[41]

Only two Euler angles are needed for specifying
transformations of objects being symmetric around
one axis, such as vectors. Equation [41] then reduces
to a rotation by the angle �FF� around the yF axis,
followed by a rotation by the angle �FF� around the zF

axis. This is illustrated in Fig. 4. In this case, the
following relationship holds between the Euler angles
{�, �} and the polar angles {�, �}:
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� 	 � [42]

� 	 � [43]

As discussed in a following publication, this relation-
ship is useful for visualizing the orientational depen-
dence of NMR interactions, especially when calculat-
ing powder averages.

In quantum mechanics, Eq. [41] is presented in
terms of the Wigner rotation operator (28, 29).

D̂
�FF�, �FF�, �FF��

� exp
�i�FF�l̂z�exp
�i�FF�l̂y�exp
�i�FF�l̂z� [44]

where we used the shorthand notation x � xF, y �
yF, and z � zF. The rotation operators are usually
represented in a basis composed of a set of 2l � 1
simultaneous eigenstates {�lm�} of the operator for
the square of the total angular momentum l̂�2 and the
operator l̂z (28, 29):

l̂�2�lm� � l
l � 1��lm� [45]

l̂z�lm� � m�lm�; m � �l, �l � 1, . . . , l [46]

The “eigenequations” involve the quantum number l
for the total angular momentum and its component m
along the z direction (28, 29). The matrix elements
Dm�m

l of the lth rank rotation operator are then given
by

Dm�m
l 
�FF�� 	 �lm��D̂
�FF���lm�

� �lm��exp
�i�FF�l̂z�exp
�i�FF�l̂y�

� exp
�i�FF�l̂z��lm� [47]

where m and m� may take all integer values between
�l and l, giving a total of (2l � 1) � (2l � 1) such
Wigner elements. It is convenient to define a reduced
Wigner element (28, 29) by

dm�m
l 
�FF�� 	 �lm��exp
�i�FF�l̂y��lm� [48]

and express Dm�m
l (�FF�) as

Dm�m
l 
�FF�� � exp
�im��FF��dm�m

l 
�FF��exp
�im�FF��

[49]

The reduced Wigner elements are real-valued func-
tions of �. Explicit expressions for dm�m

1 and dm�m
2 are

given in Table 1.

Figure 4 The orientation of an object that has a symmetry
axis (e.g., a vector) may be parameterized by the two Euler
angles {�, �}, or equivalently, by the two polar angles {�,
�}. Assume that the vector is aligned along the zF axis of
the coordinate system F (whose axes are labeled in the
figure). According to Eq. [41], the vector may be rotated to
the orientation {�, �} [indicated by the circle on the surface
of the sphere shown in (c)] by a sequence of three rotations:
first, by the angle � around the zF axis; second, by the angle
� around the yF axis; and third, by the angle � around the
zF axis. However, as a rotation around a symmetry axis
leaves the vector unaffected, the first transformation around
the zF axis does not cause any net rotation. The second and
third rotations give an orientation that in this case corre-
sponds to the orientation {�, �} � {�/2, �/4}, or in terms
of polar angles, {�, �} � {�/4, �/2}.
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Irreducible Spherical Tensors

Many objects have properties that depend on their
orientation with respect to measurements or certain
manipulations. For example, a piece of wood or meat
has fibers in certain directions, which makes it more
difficult to cut across the direction of the fibers than
parallel to them. This type of “anisotropic behavior”
is closely related to the symmetry of the object with
respect to the operation performed upon it.

“Anisotropic” objects are conveniently described
in terms of irreducible spherical tensors. An irreduc-
ible spherical tensor of rank l, expressed in frame F,
is composed of 2l � 1 elements,

�A
7


l ��F � 
�All�
F, �All�1�

F, . . . , �Al�l�
F� [50]

with the mth component denoted [Alm]F and in gen-
eral represented by a complex number [Fig. 5(a)].
Note that the number of components of the irreducible
spherical tensor depends on its rank. Components
with opposite signs of the index m are related through

�Alm�
F � 
�1�m�Al�m�

F* [51]

where the asterisk denotes complex conjugation. Each
component corresponds to the projection of the tensor
onto a certain basis function (4, 28, 29); to define an
lth rank tensor, 2l � 1 basis functions are required.
For example, consider a 3-dimensional vector repre-
sented in a Cartesian coordinate system v� � (vx, vy,
vz). Such a vector corresponds to a first-rank (l � 1)

irreducible spherical tensor. Consequently, three basis
“functions” are necessary to define the vector: in the
present case, those are the three Cartesian orthogonal
unit vectors, and each vector component vj is given by
the projection of v� onto the corresponding unit vector.
For example, the component vz is calculated as the
scalar product of v� and z� : vz � v� � z�.

The irreducible spherical tensor is defined by its
response to rotations of the coordinate system, which

Table 1 Reduced Wigner Functions

dm�m
1 (�)

m�\m 1 0 �1

1 1

2
(1 � cos �) �

1


2
sin � 1

2
(1 � cos �)

0
1


2
sin � cos � �

1


2
sin �

�1 1

2
(1 � cos �)

1


2
sin � 1

2
(1 � cos �)

dm�m
2 (�)

m�\m 2 1 0 �1 �2

2 1

4
(1 � cos �)2 �1

2
sin � (1 � cos �) 
 3

8
sin2� �1

2
sin � (1 � cos �) 1

4
(1 � cos �)2

1 1

2
sin � (1 � cos �) 1

2
(2 cos2� � cos � � 1) � 
 3

8
sin 2� 1

2
(2 cos2� � cos � � 1) �1

2
sin � (1 � cos �)

0 
 3

8
sin2� 
 3

8
sin 2� 1

2
(3 cos2� � 1) �
 3

8
sin 2� 
 3

8
sin2�

�1 1

2
sin � (1 � cos �) �1

2
(2 cos2� � cos � � 1) 
 3

8
sin 2� 1

2
(2 cos2� � cos � � 1) �1

2
sin � (1 � cos �)

�2 1

4
(1 � cos �)2 1

2
sin � (1 � cos �) 
 3

8
sin2� 1

2
sin � (1 � cos �) 1

4
(1 � cos �)2

Figure 5 (a) A second rank (l � 2) irreducible spherical
tensor has five components Alm. Each of these is in a
general reference frame represented by a complex number,
except for Al0 which is real. The components Alm and Al�m

are related through Eq. [51]. (b) The components of a
second rank irreducible spherical tensor operator. The com-
ponents T̂lm correspond to spin operators, represented as
matrices. This example assumed operators for two coupled
spins-1

2
.
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is completely specified by its rank l. Two irreducible
spherical tensors of the same rank respond similarly to
rotations, but these responses are different from that
of another irreducible spherical tensor of different
rank. An lth rank irreducible spherical tensor is trans-
formed from frame F to frame F� by multiplication
with the Wigner rotation operator of the same rank,
according to

�A
7


l ��F� � �A
7


l ��FD̂
l �
�FF�� [52]

It follows that the mth component of the tensor in the
“new” frame is related to the components of the “old”
frame according to

�Alm�
F� � �

m���l

l

�Alm��
FDm�m

l 
�FF�� [53]

Hence, under rotations, the values of the individual
components change but the number of components is
fixed. For example, the vector v� is always completely
specified by exactly three components. This is the
same as stating that the rank of an irreducible spher-
ical tensor is conserved upon rotation, in the same
way as the shape of a rigid object remains unchanged
when the object is rotated. An object that responds
equally in all directions is said to be isotropic. It is,
therefore, invariant to rotations and may be repre-
sented as a zeroth rank (l � 0) tensor (a “scalar”). As
discussed below, Eqs. [52] and [53] are used exten-
sively for transforming NMR interactions between
various coordinate systems.

Equation [52] may be viewed as a vector–matrix
multiplication: the irreducible spherical tensor repre-
sented in frame F� is obtained by multiplying a row
vector of dimension 2l � 1 with a matrix of dimen-
sion (2l � 1) � (2l � 1). This interpretation is
conveniently exploited in computer programs, espe-
cially if several consecutive transformations are
needed. For example, the transformations F 3 F� 3
F� may be carried out through

�A
7


l ��F� � �A
7


l ��FD̂
l �
�FF��D̂

l �
�F�F�� [54]

Note carefully the ordering of the subscripts.
The scalar product (inner product) of two irreduc-

ible spherical tensors is used extensively when con-
structing Hamiltonians in NMR. It is defined by

�A
7

J

l ��F � �A

7
K

l ��F � �

m��l

l


�1�m�Alm
J �F�Al�m

K �F [55]

Sometimes the components of the spherical tensors
are not complex numbers but operators [Fig. 5(b)].
An irreducible spherical tensor operator of rank l is

denoted T̂
7

(l ). Each of its 2l � 1 components may be
represented as a matrix in some suitable basis set, and
it has the following symmetry upon sign reversal of m
(28, 29):

T̂ lm � 
�1�mT̂l�m
† [56]

NMR INTERACTIONS IN SOLID STATE

Overview

The Zeeman interaction, which is the coupling of the
spin angular momentum to the static magnetic field

B0
� , is characterized by the Larmor frequency

�0 � ��IB0 [57]

where �I is the magnetogyric ratio (1–6 ) of the spins
and B0 is the magnitude of the field. However, each
spin in the sample senses a slightly different magnetic
field (“local field”) at its location, because of its very
specific chemical environment. The spin interactions
arising from these local fields may be classified into
chemical shift and spin–spin interactions (1–6 ). The
spin–spin interactions that reflect couplings between
the spins may be categorized further into homo-
nuclear couplings (involving spins of the same spe-
cies, e.g., two 1H spins) and heteronuclear couplings
(involving spins of different species, e.g., a 1H and a
13C). Also, depending on the mechanism of the cou-
plings, the spin–spin interactions may be divided into
through-space dipole–dipole (henceforth referred to
as dipolar interactions) and through-bond (scalar) in-
teractions (henceforth referred to as J interactions).
Quadrupolar nuclei, having spin number I � 1/ 2, are
also affected by first- and second-order quadrupolar
interactions (33).

NMR Interactions in Terms of Irreducible
Spherical Tensors

An important feature of NMR interactions is their
dependence on the orientation of the molecule rela-
tive to the direction of the static magnetic field, im-
plying that the NMR spectrum of a specific nuclear
site in a molecule depends on the molecular orienta-
tion. This will be discussed in detail in a following
publication. The interactions may be separated into
parts that are anisotropic (orientation dependent) and
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isotropic (orientation independent). As explained fur-
ther below, the isotropic parts correspond to the av-
erage of the interaction over all orientations of the
molecule. However, in the cases of through-space
dipolar and first-order quadrupolar interactions, the
isotropic parts are zero.

It is convenient to describe the responses of the
NMR interactions to molecular rotations by means of
irreducible spherical tensors: each NMR interaction
may be represented by a zeroth rank (l � 0) or
second rank (l � 2) irreducible spherical tensor. The
second-order quadrupolar interaction is a special case.
We will not consider it here, but refer to Ref. (33) for
details about this interaction.

NMR interactions may be thought of as deriving
from two parts: one is dependent on “molecular prop-
erties” and is henceforth referred to as the “spatial
tensor.” The lth rank part of this tensor is denoted
A
7

�
(l ), and it may be represented as a set of 2l � 1

complex numbers Alm
� as depicted in Fig. 5(a). The

other, referred to as the “spin part,” involves an irre-
ducible spherical tensor operator T̂

7

�
(l ), which depends

on spin angular momentum. The elements T� lm
� corre-

spond to spin operators that themselves are repre-
sented by matrices [Fig. 5(b)]. Together these two

parts couple together to form what we refer to as the
NMR “interaction.”

General Form of Spin Hamiltonian

The spin Hamiltonian representing the interaction �
may be expressed as a sum of scalar products of
irreducible spherical tensors, where each scalar prod-
uct involves a spatial tensor and a spin tensor (1–5 ).
The irreducible spherical tensors may be expressed in
different frames of reference. Because the Hamilto-
nian is a scalar product, it is independent of the choice
of frame of the tensors (as long as they are represented
in the same frame). However, the laboratory frame
(L) is the natural choice. It is defined such that its z
axis coincides with the direction of the static magnetic
field. The laboratory frame Hamiltonian of interaction
� may be expressed (1–5) as

Ĥ� � C� �
l�0,2

�A
7

�

l ��L � �T̂

7

�

l ��L [58]

Using Eq. [55], this may be written

Table 2 Construction of Spin Hamiltonians from Spatial and Spin Components of Various Interactions

Interaction C� A00
� T̂00

� Ĥ�
iso [A20

� ]L [T̂20
� ]L Ĥ�

aniso

Chemical shift (CS) ��I � �3 	iso
j �

1


3
B0Îjz 	iso

j �0Îjz 	CSA
j 
 2

3
B0Îjz �CSA

j 
 2

3
Îjz

Homonuclear
dipolar (D) 1 — — — �D

jk
1


6
(3ÎjzÎkz � Îj � Îk) �D

jk
1


6
(3ÎjzÎkz � Îj � Îk)

Heteronuclear
dipolar (D) 1 — — — �D

IS 
 2

3
ÎzŜz �D

IS
 2

3
ÎzŜz

Homonuclear (J) 1 �2��3 Jiso
jk �

1


3
Îj � Îk 2�Jiso

jk Îj � Îk �J,aniso
jk

1


6
(3ÎjzÎkz � Îj � Îk) �J,aniso

jk
1


6
(3ÎjzÎkz � Îj � Îk)

Heteronuclear (J) 1 �2��3 Jiso
IS �

1


3
ÎzŜz 2�Jiso

IS ÎzŜz �J,aniso
IS 
 2

3
ÎzŜz �J,aniso

IS 
 2

3
ÎzŜz

First-order
quadrupolar (Q) 1

2I(2I � 1)
— — — [Q20

j ]L
1


6
(3Îjz

2 � I(I � 1)) �Q
j

1


6
(3Îjz

2 � I(I � 1))

The spin interaction Hamiltonians may be constructed from Eq. [20] as the product of a constant C�, the spatial part in the laboratory frame
[Al0

� ]L, and the spin part [T̂l0
� ]L. (See the discussion in the text regarding the chemical shift Hamiltonian.) The contribution from the l � 0

part of interaction � is obtained by multiplying columns 2, 3, and 4 of the given row. The result is given in column 5 (Ĥ�
iso). The contribution

from the l � 2 part is obtained by multiplication of columns 2, 6, and 7, resulting in the expression given in column 8 (Ĥ�
aniso). The tensor

components [A2m
� ]P necessary for obtaining [A20

� ]L are listed in Table 3. The various parameters and constants have the following meaning:
for spin species I, �I denotes the gyromagnetic ratio and I is the spin number (i.e., total spin angular momentum). The isotropic components
Aiso (e.g. 	iso

J and Jiso
IS ) are defined as the mean value of the principal values of the spatial tensor:

Aiso �
1

3

�Axx�

P � �Ayy�
P � �Azz�

P�.

For the first-order quadrupolar interaction, the quadrupolar frequency is defined as

�Q
j �

�Q20
j �L

2I
2I � 1�
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Ĥ� � C� �
l�0,2

�
m��l

l


�1�m�Alm
� �L � �T̂l�m

� �L [59]

where C� is a constant characteristic of the interac-
tion.

In high-field NMR (ignoring second-order quadrupo-
lar interactions in the case of quadrupolar nuclei), one
may show that the only significant parts of the Hamil-
tonian are those whose spin parts commute with the the
operator for the z component of the total spin angular
momentum Îz. The commuting tensor operator compo-
nents are T̂l0

� (1–5). Equation [59] then simplifies to

Ĥ� � C�
A00
� T̂00

� � �A20
� �L�T̂20

� �L� [60]

Note that because the zeroth rank tensors are invariant
to rotations, it is not necessary to specify the partic-
ular choice of reference frame for these. Equation [60]
furnishes a framework for constructing Hamiltonians
of spin interactions. The caption of Table 2 demon-
strates how this may be done in practice for the
chemical shift, dipolar, J, and first-order quadrupolar
Hamiltonians. All Hamiltonians are given in angular
frequency units (rad s�1), as can be verified from the
interaction parameters listed in Table 2.

We emphasize that the high-field spin Hamiltonian is
a product of two components of irreducible spherical
tensors, which have to be of the same rank l. In most
cases they may be directly interpreted as a “spatial part”
(which reflects how the interaction changes when the
molecule is rotated) and a spin part (which reflects how
the interaction changes upon rotations of the spin polar-
izations). Take, for example, the anisotropic hetero-
nuclear J-coupling Hamiltonian ĤJ,aniso

IS . It involves a
component of the J tensor, which is second rank with
respect to rotations of the molecule. The spin part (�2/3
ÎzŜz) is second rank with respect to a simultaneous
rotation of both the I and S spin polarizations. However,
it is first rank with respect to rotations of either the I or
S spin polarizations alone.

The classification of spatial and spin parts of the
Hamiltonian is usually straightforward but may in some
cases be obscure. This is especially the case for the
chemical shift interaction involving the coupling of spins

to the external magnetic field 
B0
�� through the chemical

shift (CS) tensor 	
7

CS, which may be decomposed
into parts with l � 0, 1, or 2. The relevant ones to
NMR are either zeroth or second rank with respect to
rotations of the molecule. Strictly speaking, the “spin
parts” of the chemical shift interaction given in Table

2 are components of the spin-field tensor �̂
7

. This is
first rank with respect to rotations of the spin polar-

izations and additionally first rank with respect to
rotations of the external magnetic field. The spin-field
tensor may be of both zeroth and second rank with
respect to simultaneously rotating the spins and the
direction of the external magnetic field. This is the
reason for the appearance of the factors �(1/�3)
B0Îz and �2/3 B0Îz in Table 2. Because the magnetic
field direction is never changed in conventional NMR
experiments, it is often practical to combine CCS, B0,
and the relevant component of 	

7
CS together. Loosely,

this will be referred to as a “chemical shift tensor in
frequency units,” denoted �

7
CS
(l ). Starting from its def-

inition as a product of a chemical shift tensor com-
ponent and a spin-field component, the Hamiltonian of
the isotropic chemical shift interaction of spin j may be
rearranged as

ĤCS,iso
j � ��I	 00

j �̂ 00
j [61]

� ��I
�
3	iso
j ��� 1


3
B0Îjz� [62]

� 	iso
j �0Îjz [63]

using the expressions from Table 2 and the definition
of the Larmor frequency (Eq. [57]). Equation [63] is
the “conventional” form of the chemical shift Hamil-
tonian usually found in the literature (1–6 ).

In summary, care has to be taken when forming
spin Hamiltonians from irreducible spherical tensors.
However, because the Hamiltonian is crucial when
writing numerical simulation programs, it is beneficial
to exploit the irreducible spherical tensor concept,
because it provides a general framework for system-
atic construction of Hamiltonians, as well as for the-
oretical analyses of NMR experiments.

SPIN OPERATORS

Zeeman Basis

The tensor operator components T̂l0
� appearing in the

expression of the Hamiltonian (Eq. [60]) are linear
combinations of spin operators. In a numerical simu-
lation program, the explicit matrix representations are
needed for these operators. The relationship between
the T̂l0

� and the spin product operators for various
NMR interactions are given in Table 2. The operators
are normally represented in the Zeeman basis, which
is the eigenbasis of Îz. Here we outline how this basis
may be constructed for a system of coupled spins-1

2
.
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The basis set for systems of quadrupolar nuclei (I �
1/ 2) is constructed analogously.

A single spin-1
2

has two states of well-defined spin
angular momentum along the static field direction.
They are called Zeeman states: ��� denotes the state
with the quantum number for total spin angular mo-
mentum I � 1/ 2 and z component m � 1/ 2, whereas
��� is the state with I � 1/ 2 and z component m �
�1/ 2. The two Zeeman states are represented by the
following column vectors,

��� � �1
0� [64]

��� � �0
1� [65]

Coupled spin systems require larger dimensions of
the vectors representing the basis states. The spin
operators for a system of NI interacting spins-1

2
may be

represented in a Zeeman product basis (2, 3, 6, 34),
which is formed by taking direct products of the
Zeeman states of the individual spins.

�m1m2 · · · mNI
� 	 �m1� � �m2� � · · · � �mNI

�

[66]

where R represents the direct product operation (3, 6,
34) and �mj� is either ��� or ���. It follows from
combinatorics that a system of NI spins-1

2
has 2NI

different product basis states.
For instance, two spins-1

2
have four Zeeman prod-

uct states: {����, ����, ����, ����}. Each of these is
obtained as a 4-dimensional vector from a direct prod-
uct operation: for example, state ���� is calculated as
��� R ���. Note carefully that the order of the states in
Eq. [66] is important; for example, state ���� is dif-
ferent from ����. The direct product calculation is
carried out by multiplying each element ���j of the
vector representation ��� by the entire vector ���:

�������� R ��������1 � ���
���2 � ���� [67]

Using the explicit representations of Eqs. [64] and
[65], the calculations are carried out according to

���� � �0
1� � �1

0� � �0 � �1
0�

1 � �1
0�� � �

0
0
1
0
� [68]

This process may be used recursively for con-
structing the Zeeman basis states for larger spin sys-
tems. For example, the three-spin product state �����
is, according to Eq. [66], calculated as ����� � ��� R

��� R ���. The direct product operation is associative,
meaning that we may form the state ����� by two
consecutive products, as either ������ ��� R (��� R ���)
or ����� � (��� R ���) R ���. The former calculation
may alternatively be interpreted as ����� � ��� R ����.
This means we may use the already obtained represen-
tation of ���� in Eq. [68] and calculate ����� from the
direct product of a 2-dimensional vector (representing
���) with a 4-dimensional vector (representing ����).
The result is the following 8-dimensional vector:

����� � ��� � ���� � �0
1� � �

0
0
1
0
� � �

0
0
0
0
0
0
1
0

� [69]

The Zeeman product states form an orthonormal
basis set:

�m�1m�2 · · · m�NI
�m1m2 · · ·mNI

�

� 	
m�1, m1� � 	
m�2, m2� · · · 	
m�NI
, mNI

� [70]

Each Zeeman product state for a multiple-spin system
is simultaneously an eigenstate of the operators Îjz

(1 � j � NI) for the individual spins, as well as of the
operator for the z component of the total spin angular
momentum Îz � Î1z � Î2z � . . . � ÎNIz

.

Îjz�m1m2 · · · mNI
� � mj�m1m2 · · · mNI

� [71]

Îz�m1m2 · · · mNI
� � 
m1 � m2 � · · ·

� mNI
��m1m2 · · · mNI

� [72]

Note that Îjz only operates on spin j and that all other
spins stay unaffected. In a multispin system the oper-
ator Î represents the sum over all spins (within the
system) having angular momentum component  
(where  represents x, y, z, �, or �).

Î � �
j�1

NI

Îj [73]
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For example, in a four-spin system the angular mo-
mentum raising operator Î� corresponds to Î� � Î1

�

� Î2
� � Î3

� � Î4
� and increases the z-angular momen-

tum by one unit for all spins.

Matrix Representations of Spin Operators

The matrix elements of spin operators can be calcu-
lated in the Zeeman product basis using Eq. [71] and
the following expressions for the matrix elements of
the raising and lowering operators Îj

! (i.e., Îj
� or Îj

�)
(4, 5, 28, 29):

�m1m2 · · · m�j · · · mNI
�Îj

!�m1m2 · · · mj · · · mNI
�

� 
I
I � 1� � mj
mj � 1�	
m�j, mj � 1� [74]

Together with the following relations

Îjx �
1

2

Îj

� � Îj
�� [75]

Îjy �
1

2i

Îj

� � Îj
�� [76]

this is sufficient to calculate the matrix representation
of any spin operator. For example, for a single spin-1

2
,

from Eqs. [71] and [74] the following matrices are
obtained (2–6, 28, 29):

Îz �
1

2 �1 0
0 �1� [77]

Îx �
1

2 �0 1
1 0� [78]

Îy �
1

2i � 0 1
�1 0� [79]

As an example of calculations of matrix elements
we construct some of the elements of the operator
Î1zÎ3x, assuming a system of three coupled spins-1

2
.

This operator may be interpreted as as a product of
operators: Î1zÎ3x � Î1z � 1̂2 � Î3x. Here 1̂ represents the
unity operator and the matrix representation for each
operator is of dimension 8 � 8. The index of the unity
operator has no significance other than for bookkeep-
ing reasons: it signifies that “spin number two” is
unaffected by the operator Î1zÎ3x. For example, the
matrix element �����Î1zÎ3x����� may be evaluated
according to the following steps:

�����Î1z1̂2Î3x����� � �����Î1z����������1̂2�����

� �����Î3x�����

�
1

2
� 1 �

1

2
�����Î3

� � Î3
������

�
1

4
�����Î3

�����

�
1

4

where each underlined state indicates the “part” of the
bracket that is affected by the given operator. Likewise,
it may be shown that �����Î1zÎ3x����� � 0 and
�����Î1zÎ3x����� � �1/4.

It is clear that this approach to calculate the ele-
ments becomes very tedious for even moderately
large spin systems, because each operator is repre-
sented by a matrix of 2NI � 2NI dimensions. Instead,
it is much easier to construct matrix representations
using the direct product (3, 6, 34). The direct product
of two matrices A R B is effected by multiplying each
element of the first matrix ( Ajk) by the entire matrix
B. In the case of spins-1

2
, the operators are represented

by 2 � 2 matrices, and the resulting direct product
operators are of dimension 4 � 4.

By exploiting the direct product, the matrix repre-
sentation of the operator Î1zÎ3x may be obtained with-
out extensive calculations as Î1zÎ3x � Îz R 1̂ R Îx,
where the operators on the right-hand side correspond
to single spin-1

2
operators. In this case, the direct

product calculation involves forming an 8 � 8 matrix
from three 2 � 2 matrices. The explicit calculation is
given in Fig. 6, and further details of the construction
of spin operators by direct products may be found in
Refs. (3, 6, 34). This “direct product calculation” is
the method of choice for numerical implementations.
Alternatively, another technique for fast evaluation of
matrix elements is described in Ref. (13).

SPATIAL TENSORS IN DIFFERENT
FRAMES

Here we discuss how the spatial tensors of the NMR
interactions may be constructed and represented in
various commonly used reference frames. We espe-
cially focus on calculating [A20

� ]L because it is needed
for obtaining the spin Hamiltonian (Eq. [60]).

Principal Axis System

Each tensor has the simplest form in its principal axis
system (PAS), denoted P. In this frame, the magni-
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tude of the tensor may be characterized by three
parameters, referred to as principal values, denoted
[Axx]P, [Ayy]P, and [Azz]

P. For concreteness, we
continue the discussion with the chemical shift tensor
	
7

CS, as an example.
In the deshielding convention (ppm), defined, for

example, in Refs. (4, 6, 35), the chemical shift prin-
cipal values are denoted [	xx]P, [	yy]P, and [	zz]

P.
From these it is convenient to introduce three new
parameters,

	iso �
1

3

�	xx�

P � �	yy�
P � �	zz�

P� [80]

	aniso � �	zz�
P � 	iso [81]

" �
�	yy�

P � �	xx�
P

�	zz�
P � 	iso

[82]

where 	iso is the isotropic chemical shift, correspond-
ing to the average of the shift tensor over all orienta-
tions. 	aniso and " are called the anisotropy and the
asymmetry parameter of the shift tensor, respectively.
If the principal values are labeled such that

��	zz�
P � 	iso� � ��	xx�

P � 	iso� � ��	yy�
P � 	iso� [83]

the asymmetry parameter is in the range 0 � " � 1 (4,
5, 35 ). Note that other definitions of " also exist in the
literature. If " � 0, that is, if [	yy]P � [	xx]P, the
tensor is referred to as being axially symmetric (4, 5).
For all other values of ", the tensor is axially asym-
metric.

The principal values of the chemical shift tensor
may be extracted from the NMR spectrum. Due to
rapid molecular reorientations, the isotropic chemical
shift is the only directly observable parameter from
spectra of isotropic liquids because the anisotropic
parts average to zero. The spectrum corresponds to a
single sharp peak, as shown in Fig. 7(a). From the
spectrum of a static powder, on the other hand, the
principal values may be read off directly as indicated in
Fig. 7(b–d). These spectra are all for a constant shift
anisotropy 	aniso and different asymmetry parameters ".
Note how the spectral line shape depends on the value of
". Also, a larger 	aniso results in a broader spectrum.
Using numerical simulation programs, one may deter-
mine chemical shift tensor parameters by iterative fitting
of calculated and experimental spectra.

In the following we express the principal values in
frequency units, as well as the isotropic and anisotro-
pic shifts, by multiplying the various components
with the Larmor frequency:

�iso � �0	iso [84]

�aniso � �0	aniso [85]

Note that often the principal values are given in
shielding units #, leading to sign reversal of the
expressions for �iso and �aniso (1, 4, 35). From the
equations above, the zeroth and second rank irreduc-
ible tensors describing the chemical shift interaction
in its principal axis system may be expressed as

�7 CS

0� � �00

CS � � 
3 �iso [86]

��7 CS

2��P � 
��22

CS�P, ��21
CS�P, ��20

CS�P, ��2�1
CS �P, ��2�2

CS �P�

� �aniso�� 1

2
", 0, 
3

2
, 0, �

1

2
"� [87]

The rank two part �
7

CS
(2) is referred to as the chemical

shift anisotropy (CSA) tensor. Note that this is a
conflation of 	

7
CS
(2) and B0 and is strictly only a second

rank tensor as long as the magnetic field direction is
constant, as discussed earlier.

Definitions similar to those given above apply to
any NMR interaction, provided that the relevant ten-

Figure 6 The recipe for constructing the matrix represen-
tation of the operator Î1zÎ3x for a system of three coupled
spins-1

2
, starting from three 2 � 2 matrices of each individ-

ual spin. This is performed using the direct product A R B,
evaluated by multiplying each element Amn by the entire
matrix B. Here two consecutive direct products are required,
which are evaluated from right to left as Î1zÎ3x � Îz R (1̂ R

Îx). The first direct product creates a 4 � 4 matrix from two
2 � 2 matrices, and the second direct product operation
gives the final matrix of dimension 8 � 8.
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sor elements Alm
� from Tables 2 and 3 are used. Thus,

for a general anisotropy parameter Aaniso the tensor
components are

�A
7
2��P � Aaniso�� 1

2
", 0, 
3

2
, 0, �

1

2
"� [88]

Molecular Frame

If one needs to consider several NMR interactions
simultaneously in a calculation, it is common practice
to transform the tensor representing each interaction

into a common reference system that is fixed on the
molecule; this molecular frame is denoted M and
illustrated in Fig. 8(a). This procedure is convenient
since all further transformations from the molecular
frame are identical for all interactions. The Euler
angles for transforming the second rank spatial tensor
of interaction � from the principal axis system to its
molecular frame are denoted �PM

� . The transforma-
tion itself is carried out according to Eq. [52]:

�A
7

�

2��M � �A

7
�

2��PD̂
2�
�PM

� � [89]

The tensor components in the molecular frame
[A2m

� ]M are related to those of the principal axis
system through Eq. [53]:

�A2m
� �M � �

m���2

2

�A2m�
� �PDm�m

2 
�PM
� � [90]

Laboratory Frame

According to Eq. [60], only the m � 0 component of
a tensor expressed in the laboratory frame, is required
to construct the Hamiltonian. The following two sub-
sections give the general expressions for the spatial
tensor component A20 in the laboratory frame, which
are appropriate for static and rotating solids, respec-
tively.

Static Solid. Assuming a single interaction, the an-
gles �PL

� transform the second rank tensor from its
principal axis system to the laboratory frame. In a
powder containing randomly distributed crystallites,
the angle �PL

� is specific for each crystal orientation.
The expression for [A20

� ]L in Eq. [60] is

�A20
� �L � �

m��2

2

�A2m
� �PDm0

2 
�PL
� � [91]

We may inspect the dependence of the tensor on each
of the individual Euler angles {�PL

� , �PL
� , �PL

� } by
using Eq. [49]

Dm0
2 
�PL

� � � exp
�im�PL
� �dm0

2 
�PL
� �exp
�i0�PL

� � [92]

� dm0
2 
�PL

� �exp
�im�PL
� � [93]

and rewriting Eq. [91] as

Figure 7 (a) The NMR spectrum of a chemical shift
tensor from a sample in solution, displaying a sharp peak at
the isotropic chemical shift 	iso. (b–d) Spectra of a chemical
shift tensor of a spin in a molecular fragment in a static
powder. The spectra are for (b) one axially symmetric shift
tensor and (c, d) two axially asymmetric tensors. The posi-
tions of the principal values of the tensor are shown in each
case and they may be extracted from the shape of each
powder pattern. (b–d) The chemical shift anisotropy param-
eter 	aniso is the same in (b–d).
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�A20
� �L � �

m��2

2

�A2m
� �Pdm0

2 
�PL
� �exp
�im�PL

� � [94]

Equation [94] shows that there is no dependence on
the Euler angle �PL, which has implications when
simulating NMR responses from powders. In a fol-
lowing publication, such orientational considerations
will be discussed in detail.

In the case of several interactions (�1, �2, �3, . . .),
it is useful to exploit transformations via the molec-
ular frame. Assuming the sequence of transformations
through the reference frames P 3 M 3 L [see Fig.
8(a) for a physical interpretation of these transforma-
tions], the laboratory frame component [A20

� ]L is
given by

�A20
� �L � �

m,m���2

2

�A2m�
� �PDm�m

2 
�PM
� �Dm0

2 
�ML� [95]

In a powder, the angle �PM
� is specific for each

interaction but common to all crystallites in the sam-

ple, whereas the angle �ML is the same for all inter-
actions of each crystal orientation. Therefore, the ten-
sor for each interaction (�1, �2, �3, . . .) is usually
first transformed to the molecular frame using Eq.
[89]. The component [A20

� ]L is related to the tensor
components in the molecular frame by

�A20
� �L � �

m��2

2

�A2m
� �MDm0

2 
�ML� [96]

� �
m��2

2

�A2m
� �Mdm0

2 
�ML�exp
�im�ML� [97]

where the last equality follows by using Eq. [49].

Rotating Solid. In the theoretical treatment of MAS
experiments, it is convenient to define a reference
frame R on the sample holder (rotor) such that the z
axis of that “rotor frame” is along the sample rotation
axis [Fig. 8(b)]. Assume that the sample is spun at the

Table 3 Components A2m
� , �2 < m < 2, of Second Rank Spatial Tensors in Their Principal Axis System

Interaction (�) [A20
� ]P [A2!1

� ]P [A2!2
� ]P

Chemical shift (CS) 
 3

2
	aniso

j 0 �1

2
"	aniso

j

Homonuclear dipolar (D) �6 bjk 0 0

Heteronuclear dipolar (D) �6 bIS 0 0

Homonuclear J 2� 
 3

2
Janiso

jk 0 �1

2
"Janiso

jk

Heteronuclear J 2� 
 3

2
Janiso

IS 0 �1

2
"Janiso

IS

First-order quadrupolar (Q) 
 3

2
$Q 0 �1

2
"$Q

The anisotropies Aaniso of the spatial tensors (e.g., 	aniso and Janiso
jk ) are defined as

Aaniso � �Azz�
P � Aiso

with Aiso given by

Aiso�
1

3
([Axx]

P � �Ayy�
P � �Azz�

P

The asymmetry parameter for each interaction is defined

" � �Ayy�
P � �Axx�

P/
�Azz�
P � Aiso)

The dipolar coupling constants bjk and bIS are defined

bjk � %0�I
2&/
4�rjk

3 � and bIS � %0�I�S&/
4�rjk
3 �

with rjk and rIS being the distances between the two spins in the homonuclear and heteronuclear spin pair, respectively; %0 � 4� � 107NC�2s2

is the permeability of vacuum and & is Planck’s constant (h � 6.62608 � 10�34 Js) divided by 2�. The quadrupolar tensor (Q
7(2)) is defined

as the product of the electric field gradient tensor and the quadrupolar moment of the nucleus (eQ). With this definition, the magnitude of the
anisotropy of the quadrupolar interaction is given by the quadrupolar coupling constant $Q � e2qQ/&. The following units are employed for
the anisotropies: $Q and b (rad s�1), 	aniso (ppm), and Janiso (Hz).
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magic angle at a fixed angular frequency �r, associ-
ated with a rotational period

�r � 2�/�r [98]

corresponding to the time interval for the rotor to
make a complete revolution. The sample rotation
gives rise to time-dependent Euler transformation an-
gles �RL(t) relating the rotor frame R to the labora-

tory frame L. For MAS these are at a certain instant of
time t given by

�RL
t� � 
�RL
t�, �RL, �RL� � 
��rt, �m, 0� [99]

with the “magic angle” is given by �m � arctan �2.
In the case of sample rotation off the magic angle,
�RL takes an arbitrary value.

For practical calculations of rotating samples, the
transformation of a general second rank spatial tensor
from an arbitrary molecular frame to the laboratory
frame is performed by the following sequence of
rotations [depicted in Fig. 8(b)]:

�A
7

�

2��MO¡

�MR

�A
7

�

2��RO¡

�RL

�A
7

�

2��L [100]

Following the same calculations as in the static case,
the tensor in the laboratory frame is expressed

�A
7

�

2��L � �A

7
�

2��MD̂
2�
�MR�D̂


2�
�RL
t�� [101]

After carrying out the transformations and using Eq.
[49], the component [A20

� ]L may be written

�A20
� �L � �

m�,m��2

2

�A2m�
� �MDm�m

2 
�MR�dm0
2 
�m�exp
im�rt�

[102]

and identified with a time-dependent frequency
��(t) � [A20

� ]L. Inspection of Eq. [102] reveals that
it is a Fourier series; it conforms to Eq. [25] with �mod

given by �r,

��
t� �
�

m��2

2 �
m���2

2

�A2m�
� �MDm�m

2 
�MR�dm0
2 
�m�

��

m)

� exp
im�rt� [103]

� �
m��2

2

��

m�exp
im�rt� [104]

and the five Fourier components ��
(m) related to the

tensor components [A2m�
� ]M according to

��

m� � �

m���2

2

�A2m�
� �MDm�m

2 
�MR�dm0
2 
�m� [105]

The frequency ��(t) is a real number, and the Fourier
components ��

(m) and ��
(�m) are related by

Figure 8 Visualization of different frames and transfor-
mations employed in solid-state NMR. Each principal axis
system of two spatial tensors are shown (PV, PW). Each of
these is related to the molecular frame M by the Euler
angles �PM

V and �PM
W , respectively. (a) The transformations

relevant for a calculation of a static sample. (b) Analogous
transformations for a calculation of a rotating sample. The
rotor frame R is chosen such that its z axis subtends the
angle �RL with the static field direction. For magic-angle
spinning, �RL � arctan�2. The coordinate system M is
related to the rotor frame by the angles �MR, and the final
transformation into the laboratory frame is given by the
time-dependent angles �RL(t) � {��r t, �m, 0}.
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��

m� � 
��


�m��* [106]

This relationship is useful, for example, to speed up
numerical calculations, because it follows that only
��

(m) for m � 0 needs to be calculated explicitly by
Eq. [105]. This limits the calculation to only three out
of five components, because the remaining two may
be obtained directly from Eq. [106]. Consequently,
Eq. [104] may be written

��
t� � ��

0� � 2 �

m�1

2

Re
��

m��cos
m�rt�

� Im
��

m��sin
m�rt� [107]

Equations [106] and [107] are proven in Appendix A.
Equation [104] shows how MAS induces a time-

periodic modulation of the second rank spatial ten-
sors. The value of ��(t0) is equal to that following
completion of a full rotational period: ��(t0) �
��(t0 � �r). This may be verified by inserting the
two different time points into Eq. [104]. Using �r�r �
2�, the exponential factor may be expressed as
exp{im�r(t0 � �r)} � exp{im�rt0}exp{2im�} �
exp{im�rt0}. This demonstrates that the spatial part
of the Hamiltonian is periodic in time.

Rotating Frame

Although we have thus far stressed the laboratory
frame as the “final” reference frame, in practice an
additional transformation of the Hamiltonian is nor-
mally employed: one to the rotating frame (1–6 ).
This involves transforming the spin parts of the Ham-
iltonian, and it must be distinguished from the rotor
frame R of the previous section. Employing the rotat-
ing frame means observing the NMR experiment from
a time-dependent coordinate system, where the trans-
verse plane rotates around its z axis (which coincides
with that of the laboratory frame) at a constant rate
�ref, close to the Larmor frequency of the spins.

The resulting rotating frame spin Hamiltonian in-
cludes all interactions of the local magnetic fields,
such as the chemical shifts and dipolar couplings, but
excludes the Zeeman interaction. The rotating frame
Hamiltonian may be obtained from the laboratory
frame Hamiltonian after subtracting the term �refÎz

from the latter. The explicit transformations are given
in Refs. (2–6, 35).

NMR TIME-DOMAIN SIGNAL AND
SPECTRUM

The remainder of the article discusses how the NMR
signal in both the time and frequency domains is
obtained as a result of the time evolution of the spin
system. In this section a general formalism for calcu-
lating the time-domain signal under any experimental
circumstance is outlined. The next section discusses
concepts of dynamically homogeneous and inhomo-
geneous Hamiltonians. Next, the form of the NMR
signal is derived for the case of a dynamically inho-
mogeneous Hamiltonian. Two specific classes of dy-
namically inhomogeneous problems are examined in
more detail: experiments with a static sample and a
rotating sample. Computer code for simulating NMR
time-domain signals and frequency-domain spectra
for these cases will be provided in the two following
articles.

Density Operator

NMR experiments are normally performed on a very
large ensemble of nuclear spin systems, where the
spins may interact with each other within each sys-
tem, but the various ensemble members (i.e., spin
systems) are independent of each other. In such cases,
the density operator formalism is applicable. This is a
statistical approach, having the advantage that one
obtains a density operator '̂, representing the entire
ensemble state, without the need to consider the state
of each individual spin system in the very large en-
semble. Further information about the density opera-
tor formalism may be found in Refs. (2–6, 29, 34).

The density operator is represented by the density
matrix in a suitable basis set. For example, for an
ensemble of isolated spins-1

2
, the density matrix may

in the Zeeman basis be written

'̂ � � ���'̂��� ���'̂���
���'̂��� ���'̂���� [108]

Each element of the density matrix represents the spin
ensemble in various states: the diagonal elements
correspond to fractional populations of the states,
whereas the off-diagonal elements represent coher-
ences. We refer to Refs. (2–6) for the exact meanings
of these terms. In the case of isolated spins-1

2
, the

elements ���'̂��� and ���'̂��� give the fractional pop-
ulations of the states ��� and ���, respectively. If the
magnitudes of these elements are different there is a
net longitudinal spin polarization (and magnetization)
along the static field direction. The two off-diagonal
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elements ���'̂��� and ���'̂��� correspond to �1 and
�1 quantum coherences (�1QC and �1QC), respec-
tively. The presence of single-quantum coherences in
the ensemble is equivalent to a net spin polarization
(and magnetization) in the transverse plane of the
rotating frame. The spin density operator may be
expressed as a linear combination of spin operators of
the system. Net longitudinal magnetization corre-
sponds to a density operator proportional to Îz,
whereas transverse magnetization corresponds to '̂
being proportional to a combination of Îx and Îy, or
equivalently, a linear combination of Î� and Î�. (See
Eqs. [75] and [76] for the relationship between the
various operators.)

The density operator of an ensemble of isolated
spins-1

2
may be written using the Dirac formalism as

'̂ � �
j,k��,�

�

� j�'̂�k� � � j��k� [109]

� ���'̂��� � ������ � ���'̂��� � ������

����'̂��� � ������ � ���'̂��� � ������ [110]

The explicit matrix representation of Eq. [110] corre-
sponds to Eq. [108]. The operators ������ and ������
correspond to �1QC and �1QC, respectively. For
example, it may be verified that the operator ������
corresponds to Î� by letting it operate on each of the
Zeeman basis states ��� and ���. We get


������� � ��� � ��� � ����� � ���

and


������� � ��� � ��� � ����� � 0

as expected from the operator Î�: it converts state ���
into state ���. Likewise, it may be demonstrated that
������ � Î�.

In the general case of an ensemble consisting of
multiple-spin systems, with the spin operators repre-
sented in an arbitrary basis spanned by � states {�1�,
�2�, . . . , ���}, the density operator may formally be
expressed in the Dirac formalism as the following
sum:

'̂ � �
j,k�1

�

� j�'̂�k� � � j��k� [111]

This expression may be derived by multiplying the
density operator from both sides by the unity operator,
1̂'̂1̂, and then inserting the closure relation (29)

�
j�1

�

� j�� j� � 1̂ [112]

which states that the sum over all projection operators
� j�� j� (2–6, 29, 34) equals the unity operator. Then
we obtain the expression

'̂ � �
j,k�1

�

� j�� j� � '̂ � �k��k� [113]

Equation [111] follows from interpreting the product
� j�� j� � '̂ � �k��k� as � j� � � j�'̂�k� � �k� and then using
that � j�'̂�k� as a complex number that may be rear-
ranged within the product. (Similar calculations were
carried out in an earlier section.)

Note that the basis employed in Eq. [111] may not
necessarily be the Zeeman product basis. Formally,
the interpretation of the diagonal and off-diagonal
elements in terms of populations and coherences is
similar, regardless of the choice of basis. However,
unless the Zeeman basis is employed, the physical
meanings of the matrix elements (e.g., in terms of spin
polarizations and magnetizations) differ from the
usual interpretations. In the following, we will fre-
quently express the density operator in the eigenbasis
of the Hamiltonian, because this is well suited for
describing spin dynamics (10–13, 15, 17, 18 ).

The starting point for any NMR experiment is the
spin ensemble at thermal equilibrium in a strong mag-
netic field B� . Over the ensemble, there is a net polar-
ization pointing along the static magnetic field (i.e., a
net longitudinal polarization). As pointed out earlier,
this corresponds to a density operator being propor-
tional to Îz (2–6, 34),

'̂eq ( 
1̂ � �IÎz� [114]

where �I is the Boltzmann factor, given by

�I �
�&�IB0

kBT
[115]

Here T is the temperature (K) and kB � 1.381 �
10�23 JK�1 is the Boltzmann constant. The unity
operator and the Boltzmann factor will not affect any
of the results in our treatment and will be dropped.
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The thermal equilibrium density operator used in the
following is then given by

'̂eq � Îz [116]

Time Evolution of Density Operator

Assume the spin ensemble is initially at t � ta in a
certain state represented by '̂(ta) and that the total
spin Hamiltonian (including the contributions from all
interactions) does not commute with '̂(ta). Then the
Hamiltonian will cause a change of the spin ensemble
state, which mathematically translates into a change
of the density operator; it becomes time dependent:

'̂
ta� ¡
Ĥ

'̂
t� [117]

The central question when dealing with quantum dy-
namics in NMR is, given that we know the density
operator at the time point ta, how do we find its
expression at a later time point tb? The solution to the
problem is the operator Û(tb, ta), called the propa-
gator, which transforms the density operator accord-
ing to the following “sandwich formula” (2–6, 29):

'̂
tb� � Û
tb, ta�'̂
ta�Û
tb, ta�
† [118]

Note that the time points are written such that later
times appear to the left, for example, the propagator
transforming '̂(ta) into '̂(tb) (with tb � ta) is written
Û(tb, ta).

The propagator is a unitary operator (2–6, 29),
from which follows that its inverse may be obtained
by the adjoint operation (see Eq. [4]):

Û
tb, ta�
�1 � Û
tb, ta�

† [119]

The propagator is formally related to the Hamilto-
nian through the Schrödinger equation (2–6, 29)

d

dt
Û
t, ta� � �iĤ
t�Û
t, ta� [120]

This differential equation needs to first be solved for
an expression of Û(tb, ta), which subsequently can be
used in Eq. [118]. However, the Schrödinger equation
generally has no exact solution. This is one reason
why computer programs that numerically carry out
the integration are useful. On the other hand, in the
case of dynamically inhomogeneous Hamiltonians,
Eq. [120] may be solved analytically. We will dem-
onstrate this in a later section.

Properties of Propagators

In this section we discuss a few important properties
of propagators, which will prove very useful in nu-
merical implementations.

Assume that the Schrödinger equation is integrated
over the interval �ca � tc � ta, with tc � ta as
illustrated in Fig. 9. By definition, the solution is the
propagator Û(tc, ta) � Û(�ca), which transforms
'̂(ta) into '̂(tc) through the operator sandwich, Eq.
[118]. At the moment, we do not consider how the
propagator is determined. Here we introduce the
shorthand notation Û(�ca): in the following, we will
use the two notations Û(tc, ta) and U(�ca) inter-
changeably.

If a time point tb is picked within the interval �ca,
we may solve the Shrödinger equation separately over
each of the two time segments �ba and �cb of Fig. 9.
This results in Û(tb, ta) � Û(�ba) [transforming '̂(ta)
3 '̂(tb)] and Û(tc, tb) � Û(�cb) [transforming '̂(tb)
3 '̂(tc)]. The following relationship holds between
the three operators, Û(tc, ta), Û(tb, ta), and Û(tc, tb)
(29):

Figure 9 A propagator Û(�ca), which is schematically
depicted as the shaded box at the bottom of the figure, is to
be determined over the time interval �ca � tc � ta. This
propagator may be formed by first dividing the interval �ca

into two smaller segments, �ba � tb � ta and �cb � tc �
tb, and then calculating Û(�ca) as the time-ordered product
Û(�ca) � (Û�cb) Û(�ba) from the propagators over the
smaller time segments. Note the order of the operators in the
product. If the expression for '̂(ta) is known, each of these
propagators may then be used to determine the density
operators '̂(tb) and '̂(tc) according to the operator sand-
wich formula, Eq. [118].
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Û
tc, ta� � Û
�cb�Û
�ba� [121]

� Û
tc, tb�Û
tb, ta� [122]

The order of the propagators in the product Û(tc, tb)
Û(tb, ta) is important and may not be changed, be-
cause the operators generally do not commute. A
product of the form of Eq. [122] is said to be time
ordered (1–5 ): propagators involving later time
points appear to the left to those involving earlier time
points.

We motivate Eq. [122] as follows: if we are to
propagate the density operator from t � ta to t � tc,
we may either do the transformation in one step using
the operator of the left-hand side of Eq. [122] accord-
ing to

'̂
tc� � Û
tc, ta�'̂
ta�Û
tc, ta�
† [123]

or through two successive transformations using the
right-hand side of Eq. [122]. We verify that the sand-
wich


Û
tc, tb�Û
tb, ta��'̂
ta�
Û
tc, tb�Û
tb, ta��
† [124]

is indeed equal to the density operator '̂(tc). Using
the fact that the adjoint of a product of two unitary
operators is equal to the reversed product involving
the adjoint of each operator (6, 29), that is,


ÂB̂�† � B̂†Â† [125]

it follows that the rightmost factor of Eq. [124] cor-
responds to {Û(tc, tb)Û(tb, ta)}† � Û(tb, ta)†Û(tc,
tb)†. Hence, we may write

Û
tc, tb�Û
tb, ta� � '̂
ta� � Û
tb, ta�
†Û
tc, tb�

†

� Û
tc, tb� � Û
tb, ta�'̂
ta�Û
tb, ta�
†

'̂
tb�

� Û
tc, tb�
† [126]

Inserting Eq. [118] into Eq. [126] gives Û(tc,
tb)'̂(tb)Û(tc, tb)†, which, by definition, equals '̂(tc).
Hence, the right-hand side of Eq. [122] effects the
transformation '̂(ta) 3 '̂(tc).

In general, if the density operator is to be propa-
gated over a given time interval �ca, the result is the
same, regardless of whether the propagator Û(tc, ta)
is used directly or a series of “small-step” transfor-
mations (involving propagators over smaller time seg-
ments within �ca) are used successively.

Time propagation of the density operator, that is,
transforming '̂(ta) 3 '̂(tc) in successive steps, is
analogous to a series of geometrical transformations

in 3-dimensional space, that is, transforming an object
by a sequence of rotation operators R̂(�FF�). In the
former case, the propagator Û(tc, ta) may be decom-
posed into a product of propagators over subsegments
of �ca, according to Eq. [122]. In the latter case, a net
rotation operator may be decomposed into a product
of rotation operators (each effecting a “simpler rota-
tion”) as illustrated by Eq. [39].

Another important property of propagators is that
Û(ta, tb) is the inverse of Û(tb, ta), that is,

Û
ta, tb� � 
Û
tb, ta��
�1 � Û
tb, ta�

† [127]

Note the ordering of time points. If tb � ta, the
meaning of Û(ta, tb) is the operator that transforms
the density operator backward in time: '̂(tb)3 '̂(ta).
Equation [127] may be proven as follows: assume that
we first transform '̂(ta) into '̂(tb) according to Eq.
[118]. Next, we perform the reverse transformation
'̂(tb) 3 '̂(ta) according to

'̂
ta� � Û
ta, tb�'̂
tb�Û
ta, tb�
† [128]

By combining both transformations sequentially, we
get the following result:

'̂
ta� � Û
ta, tb� � '̂
tb�

Û
tb, ta�'̂
ta�Û
tb, ta�†

� Û
ta, tb�
† [129]

� 
Û
ta, tb�Û
tb, ta��'̂
ta�
Û
ta, tb�Û
tb, ta��
†

[130]

Because the left-hand and right-hand sides of Eq.
[130] must be equal, it follows that each of the oper-
ator products within braces must be equal to the unity
operator,

Û
ta, tb�Û
tb, ta� � 1̂ [131]

which proves Eq. [127]. The procedure employed to
demonstrate Eq. [127] also has an analogy to rotations
in space: an object stays unaffected if it is first rotated
by an angle � around a given axis and subsequently
rotated by the angle �� around the same axis.

NMR Signal

The previous sections explained how the ensemble of
spin systems are represented by a density operator and
how the Hamiltonian causes the density operator to
evolve in time through the propagator. We now con-
tinue to discuss the relationship between the density
operator and the NMR time-domain signal.
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The acquired NMR time-domain signal s(t) corre-
sponds to the expectation value �Q̂� of an “observable
operator” Q̂. In principle, Q̂ may be any Hermitian
spin operator, because we may only directly detect
quantized systems through Hermitian operators (29).
The time-domain signal s(t) � �Q̂�(t) may be calcu-
lated from the trace of the product between the density
operator and the observable operator:

s
t� � �Q̂�
t� � Tr
'̂
t�Q̂� [132]

The trace of an operator corresponds to the sum of its
diagonal elements (29). Using an arbitrary basis set,
the time-domain signal may be alternatively ex-
pressed in either of the following forms:

s
t� � �
j�1

�

� j�'̂Q̂� j� [133]

s
t� � �
j,k�1

�

� j�'̂�k��k�Q̂� j� [134]

Using Eq. [133], the signal is calculated by taking the
trace of the product '̂Q̂, while Eq. [134] implements
the trace as a pairwise multiplication of elements of
the two operators. The latter expression follows after
inserting the closure relation into Eq. [133]; a similar
calculation was performed earlier.

Modern NMR spectrometers employ quadrature
detection, which results in detection of �1QC (4–6,
35 ). In practice, this is performed by simultaneously
recording the expectation values of the two Hermitian
operators �Îx�(t) and �Îy�(t). Next, they are combined
using Eqs. [75] and [76] to obtain the expectation
value �Î��(t). Therefore, Î� corresponds to the de-
tection of �1QC, despite the fact that formally, this
operator is not Hermitian (as may be seen from its
matrix representation). We refer to Refs. (4–6, 35)
for more complete accounts of quadrature detection.

Single Pulse Experiment. Assume an RF pulse of
flip angle �/2 and phase �/2 [denoted (�/ 2)y, see
Refs. (2–6 )] is applied to an ensemble of nuclear
spins at thermal equilibrium in a strong magnetic
field. Before the pulse is initiated, there is a net spin
polarization pointing along the static field. The pulse
rotates this polarization around the rotating frame y
axis by the angle �/2, leaving the net polarization
pointing along the rotating frame x axis right after the
pulse. This corresponds to the following density op-
erator

'̂
t0� � Îx [135]

Because Îx has off-diagonal elements (as may be
verified from its matrix representation, Eq. [78]) it
represents a spin ensemble state of single-quantum
coherences. As discussed above, single-quantum co-
herences may be interpreted as transverse magnetiza-
tion, which may be detected by the NMR spectrom-
eter. The NMR time-domain signal generated by the
subsequent spin evolution under the Hamiltonian is
usually referred to as a free-induction decay (2–6 ).
The time point at the start of NMR signal acquisition
is denoted t0, and it is furthermore defined to be equal
to zero (2–6 ). Figure 10 depicts the RF scheme of the
pulse and the corresponding changes of the density
operator. Assuming that the time-domain signal is
acquired by this simple one-pulse experiment, its cor-
responding NMR frequency-domain spectrum S(�) is
obtained by Fourier transforming s(t) using Eq. [28],
as discussed previously.

Equations [118], [120], and [132] are the funda-
mental expressions for calculating the NMR time-
domain signal from any experiment. However, these
equations are very general and in their present form
do not provide much insight into the dynamics. The
following sections discuss how they are applied to
so-called “dynamically inhomogeneous problems”

Figure 10 A radio frequency pulse scheme for a simple
NMR experiment generating a detectable NMR time-do-
main signal. The spin ensemble is initially at thermal equi-
librium, corresponding to the density operator '̂eq � Îz. A
�/2 pulse is applied along the y axis of the rotating frame,
creating observable single-quantum coherences (“transverse
magnetization”). The NMR signal acquisition starts right
after the pulse and defines t � 0. At this time point, the
density operator is given by '̂(0) � Îx � Î� � Î�, where the
presence of �1QC and �1QC is signified by the operators
Î� and Î�, respectively. The subsequent evolution of the
�1Q coherences generates the NMR time-domain signal
(here illustrated by a damped oscillating function), as dis-
cussed in the text. The figure is not drawn to scale: the
duration of the pulse is on the order of microseconds
whereas the signal acquisition interval is normally in the
range of tens or hundreds of milliseconds.
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and how the properties of the resulting NMR signals
in the time and frequency domains are derived. The
resulting equations will be implemented numerically
in my next article.

It should be kept in mind that the spin Hamiltonian,
density matrix, and NMR signal are not only depen-
dent on time but also on the spatial orientation of the
molecule: For brevity, this dependence has not been
indicated explicitly, but it will be included in a fol-
lowing article. Another factor that needed to be taken
into account in a numerical simulation is relaxation of
the nuclear spins: we do not include this explicitly,
but the damping of the spin coherences (T2 or spin–
spin relaxation) is accounted for phenomenologically,
as discussed later.

DYNAMICALLY HOMOGENEOUS AND
INHOMOGENEOUS HAMILTONIANS

The crucial step in NMR simulations is the numerical
integration of the Shrödinger equation (Eq. [120]).
Therefore, perhaps the most important factor dictating
both the complexity of computer implementation (i.e.,
the code) and the time span when executing the sim-
ulation is the nature of the Hamiltonian under which
the spins evolve.

If the Hamiltonian does not commute with itself
when evaluated at two different time points, that is, if

�Ĥ
t1�, Ĥ
t2�� � Ĥ
t1�Ĥ
t2� � Ĥ
t2�Ĥ
t1� � 0 [136]

the Schrödinger equation generally has no simple
analytical solution. The following article will outline
how Û(t, t0) may be approximated numerically in
such cases. This article is primarily confined to deal-
ing with somewhat simpler problems: those for which
the Hamiltonian is either time-independent or self-
commuting and periodic in time.

If the Hamiltonian is time independent (Ĥ � con-
stant), the propagator, which is obtained as the solu-
tion to Eq. [120], is given by the simple expression

Û
t, t0� � exp
�i
t � t0�Ĥ� [137]

This allows the obtaining of the density operator, and
hence the time signal, at any point in time by the
evaluation of an exponential operator, which can be
easily done using the results presented earlier. An
experiment with a static sample is a typical example
of such a case.

Maricq and Waugh (27 ) introduced the nomencla-
ture dynamically inhomogeneous Hamiltonian when it
is self-commuting and dynamically homogeneous
when it is not self-commuting. In the former case,
[Ĥ(t1), Ĥ(t2)] � 0. Physically, the spin evolution
under a sum of mutually commuting Hamiltonians
(i.e., the dynamically inhomogeneous case) is the
superposition of the evolution under each interaction
taken in isolation: the various interactions “add up.”
However, if these Hamiltonians do not commute (i.e.,
the dynamically homogeneous case), the net evolution
is more complicated because of interference between
the various terms. An important point is that the total
Hamiltonian is dynamically homogeneous, even if all
individual Hamiltonians commute with each other
except at least one (27 ).

Consequently, it is necessary to identify each ex-
perimental situation that is to be simulated numeri-
cally and determine whether its Hamiltonian is homo-
geneous or inhomogeneous. This depends both on the
“internal” interactions within the spin system and on
the experimental conditions (MAS and RF fields).
The Hamiltonians for experiments with rotating sol-
ids are dynamically homogeneous in general. How-
ever, there are some important exceptions. Examples
of dynamically inhomogeneous cases in rotating sol-
ids are isolated nuclear spins subject to chemical shift
anisotropy and/or first-order quadrupolar interactions.
Heteronuclear spin systems also evolve under dynam-
ically inhomogeneously Hamiltonians, as long as the
spins are not subject to second-order quadrupolar
interactions or homonuclear couplings: the hetero-
nuclear dipolar or J-coupling Hamiltonians commute
with the chemical shifts or first-order quadrupolar
Hamiltonians, as can be verified using the expressions
of the spin operators given in Table 2. Furthermore, as
discussed in Ref. (4), special cases exist in rotating
solids where the spin operators of the interactions do
not commute with each other, but which are never-
theless dynamically inhomogeneous because all spa-
tial tensor orientations coincide. One example is a
linear chain of homonuclear dipolar-coupled spins
with identical chemical shift tensors.

Note, however, that all the cases mentioned
above are dynamically inhomogeneous only in the
absence of RF fields: the rotating frame RF Ham-
iltonian during a pulse (applied exactly on reso-
nance) of constant amplitude �RF and phase �RF

may be written (1– 6 )

ĤRF � �RF
Îxcos
�RF� � Îysin
�RF�� [138]
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It may be verified that ĤRF does not commute with the
internal spin interactions listed in Table 2 and hence
will lead to homogeneous spin dynamics.

NMR TIME SIGNAL AND SPECTRUM
FROM DYNAMICALLY INHOMOGENEOUS
HAMILTONIAN

General Formalism

Here we derive the general expression for the NMR
time-domain signal (Eq. [132]) from spin systems
evolving under dynamically inhomogeneous Hamil-
tonians. Similar treatments may be found, for exam-
ple, in Refs. (2, 4, 36). For most equations, we keep
the arbitrary initial time point t0 for completeness
(e.g., in Eqs. [118] and [120]), but we always assume
that t0 � 0 (corresponding to the start of acquisition
in an NMR experiment) when evaluating the NMR
signal. We employ a rotating frame in the analysis and
assume the absence of RF fields during the acquisi-
tion.

Dynamically Inhomogeneous Hamiltonians. Dy-
namically inhomogeneous Hamiltonians have, in gen-
eral, time-dependent eigenvalues but time-indepen-
dent eigenstates (eigenvectors) (27 ). Consequently, if
the Hamiltonian is diagonalized, a set of � eigenval-
ues �u and � orthonormal eigenstates �u� is obtained,
where each state obeys the following eigenequation:

Ĥ
t��u� � �u
t��u� [139]

We reserve the label u (and when needed v, r, and s)
for indices representing eigenstates and eigenvalues
of the Hamiltonian or its corresponding propagator.
As for any operator represented in its eigenbasis (Eq.
[7]), the Hamiltonian may be expanded as products of
an eigenvalue �u(t) and a projection operator �u��u�
onto the corresponding eigenstate �u� (2, 4, 36 )

Ĥ
t� � �
u�1

�

�u
t��u��u� [140]

Propagator and Dynamic Phase. Next we seek an
expression for the propagator. If the Hamiltonian
commutes with itself at all time points between t0 and
t (as in the present case), the formal solution to Eq.
[120] is obtained as the exponential of the integral of
the Hamiltonian over the time interval t0 � t� � t,

Û
t, t0� � exp��i �
t0

t

dt�Ĥ
t��� [141]

� exp��i �
u�1

� �
t0

t

�u
t��dt��u��u�� [142]

where the last equality follows by inserting Eq. [140].
Equation [142] shows that the propagator corresponds
to a sum over complex exponentials of integrated
Hamiltonian eigenvalues, each multiplied with the
projection operator �u��u�. We define the real-valued
function )u(t, t0) as the integrated eigenvalue �u(t)
over the time interval

)u
t, t0� � �
t0

t

dt��u
t�� [143]

The symbol )u(t, t0) is called the dynamic phase (4,
36–38 ) accumulated by the eigenstate �u� over the
time interval t0 � t� � t. The dynamic phases
involve products of Hamiltonian eigenvalues (rads�1)
and time (s); hence, )u(t, t0) is in rad units, which
means it may be interpreted as an “angle.” We elab-
orate on this physical interpretation further later when
considering the time evolution of the density operator
and the form of the time-domain signal. From the
properties of the integral it follows that the dynamic
phase )u(t0, t) is related to )u(t, t0) by sign reversal:

)u
t0, t� 	 �
t

t0

dt��u
t�� � ��
t0

t

dt��u
t��

	 �)u
t, t0� [144]

By Taylor expansion of the exponential operator
exp{iÂ} (Eq. [13]) one can show that it commutes
with Â, and consequently the two operators share the
same eigenbasis (29). It then follows that the propa-
gator is diagonal in the Hamiltonian eigenbasis, and
Eq. [142] may be expressed in terms of dynamic
phases )u(t, t0) and projection operators �u��u� as
(4, 36 )
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Û
t, t0� � �
u�1

�

exp
�i)u
t, t0���u��u� [145]

which is a relatively simple expression. Equation
[145] is proven in Appendix B. The inverse propaga-
tor Û(t, t0)†, is given by

Û
t, t0�
† � �

u�1

�

exp
i)u
t, t0���u��u� [146]

Hence, the operators Û(t, t0)† and Û(t, t0) only differ
by the sign of their exponents.

Time Evolution of Density Operator. We may get
more insight into the role of the dynamic phase in spin
dynamics by examining the time evolution of the
density operator that the propagator of Eq. [145] gen-
erates: assume that the density operator is initially
proportional to an arbitrary operator �u��v�: '̂(t0) �
�u��v�. This operator is associated with a coherence
between the Hamiltonian eigenstates �u� and �v�.

The density operator at a later time point t is
obtained by combining Eqs. [145] and [118] as fol-
lows:

'̂
t� � Û
t, t0�'̂
t0�Û
t, t0�
† [147]

� �
r,s�1

�

exp
�i)r
t, t0���r��r�

Û
t, t0�

� �u��v�

'̂
t0�

� exp
i)s
t, t0���s��s�

Û
t, t0�†

[148]

� �
r,s�1

�

exp
�i)r
t, t0��exp
i)s
t, t0���r�

� �r�u� � �v�s� � �s� [149]

Because the Hamiltonian eigenstates are orthonormal,
we may use Eq. [2]: �r�u� � 	ru and �v�s� � 	vs. The
sum then reduces to the single term

'̂
t� � exp
�i)u
t, t0��exp
i)v
t, t0�� � �u��v� [150]

� exp
i)uv
t, t0���u��v� [151]

where the two exponents were combined into the
phase )uv(t, t0), defined as the difference between
the dynamic phases of states �v� and �u�,

)uv
t, t0� � )v
t, t0� � )u
t, t0� [152]

Note how the difference is formed: the phase corre-
sponding to the leftmost index (u) is subtracted from
that to the right (v). In the following, we employ
similar indexing to denote differences between other
entities.

Equation [151] shows that the density operator
remains proportional to the operator �u��v� at all time
points. All changes are accommodated in the phase
factor exp{i)uv(t, t0)}. The spin dynamics under a
dynamically inhomogeneous Hamiltonian is remark-
ably simple; if the spin ensemble is initially in a
certain state, it stays there at all times. We stress that
Eq. [151] is a direct consequence of having time-
independent Hamiltonian eigenstates. All manipula-
tions leading to Eq. [151] implicitly exploited that the
eigenstates of the Hamiltonian and propagator are
independent of time.

A homogeneous Hamiltonian, on the other hand,
has time-dependent eigenstates: the corresponding
propagator (i.e., the solution of Eq. [120]) generally
has no closed analytical form. Assume that the density
operator is initially proportional to �u��v� (represent-
ing a certain coherence in the spin ensemble) and
subject to a dynamically homogeneous Hamiltonian.
At a later time point, this coherence will generally be
transferred into other coherences and populations, de-
pending on the exact form of the Hamiltonian. The
density operator at a given time point may always be
expressed as a linear combination of its eigenstates.
However, these are time dependent for dynamically
homogeneous Hamiltonians.

NMR Time-Domain Signal. In this section we derive
the general expression for the NMR time-domain
signal from a dynamically inhomogeneous Hamilto-
nian (Eq. [159]) for t0 � 0.

The time-domain signal is calculated as the trace of
the product of the density and observable operators
(Eq. [133]). The trace of an operator (or products of
operators) is independent of the choice of basis set for
the matrix representation (3, 4, 29): we employ the
eigenbasis of the Hamiltonian, leading to

s
t� � �
u�1

�

�u�'̂
t�Q̂�u� [153]

Next we use the idea that the basis set is orthonormal
and insert the closure identity (Eq. [112]):
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s
t� � �
u,v�1

�

�u�'̂
t��v��v�
1̂

Q̂�u� [154]

which may be compared with a similar expression,
Eq. [134], that employed an arbitrary basis set. After
inserting Eq. [118], together with the analytical ex-
pression for the dynamically inhomogeneous propa-
gator (Eq. [145]), the signal may be expressed as

s
t� � �
u,v�1

�

�u�Û
t, 0�'̂
0�Û
t, 0�†�v��v�Q̂�u� [155]

� �
u,v,r,s�1

�

�u� � exp
�i)r
t, 0���r��r�
Û
t, 0�

[156]

� '̂
0� � exp
i)s
t, 0���s��s�

Û
t, 0�†

� �v��v�Q̂�u�

Rearranging the exponential factors and using Eq.
[152] gives

s
t� � �
u,v,r,s�1

�

�r�'̂
0��s� � �v�Q̂�u� [157]

� exp
i)rs
t, 0�� � �u�r� � �s�v�

Equating the scalar products �u�r� and �s�v� with the
Kronecker delta functions 	(u, r) and 	(s, v), respec-
tively, provides the following expression for the time
signal

s
t� � �
u,v,r,s�1

�

�r�'̂
0��s�

� �v�Q̂�u�exp
i)rs
t, 0��	
u, r�	
s, v� [158]

� �
u,v�1

�

�u�'̂
0��v��v�Q̂�u�exp
i)uv
t, 0�� [159]

Equation [159] is the key result of this section: it
corresponds to the general expression for the NMR
time-domain signal from a spin system evolving under
a dynamically inhomogeneous Hamiltonian. Below
we examine how it is evaluated in two limiting cases:
when the Hamiltonian is either time-independent or
periodic in time. These correspond to the situation of
static and rotating samples, respectively, and they are
the scenarios considered in the numerical simulations
in subsequent articles.

Time-Independent Hamiltonian

Because the Hamiltonian has time-independent eigen-
values, the expression for the dynamic phase )uv(t,
0) evaluates to the simple expression

)uv
t, 0� � �
0

t

dt�
�v � �u� [160]

� 
�v � �u�

�uv

� t [161]

where we defined the frequency �uv as the eigenvalue
difference,

�uv � �v � �u [162]

By defining an amplitude as the product of the matrix
elements of the initial density operator and observ-
able,

auv � �u�'̂
0��v��v�Q̂�u� [163]

Equation [159] casts as (2, 4)

s
t� � �
u,v�1

�

auvexp
i�uvt� [164]

Thus, the time-domain signal from a time-indepen-
dent Hamiltonian is given by a sum of complex ex-
ponentials oscillating at the angular frequency differ-
ences �uv of the Hamiltonian eigenvalues.

The time-domain signal is converted into the NMR
spectrum by a Fourier transform

S
�� � �
u,v�1

�

auv	
�, �uv� [165]

Equation [165] shows that the spectrum from a time-
independent Hamiltonian is represented by a set of
“spikes” (	 functions) at the frequency coordinates
� � �uv. The corresponding amplitudes auv are
given as products of the elements of the observable
and initial density operator, both expressed in the
eigenbasis of the Hamiltonian. An experimental spec-
trum always has “broad” peaks due to decay mecha-
nisms of the time signal (“relaxation”). Assuming an
exponential decay of the time-domain signal, the cor-
responding spectrum that results after Fourier trans-
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formation contains peaks with Lorentzian shapes in-
stead of 	 functions. Line broadening may also be
introduced in simulated spectra, as will be explained
in the next article. Figure 11(a) shows a typical spec-
trum obtained from one of the terms in Eq. [165].

Example: Isotropic Chemical Shift Evolution. To
illustrate spin evolution under a time-independent
Hamiltonian, we explicitly derive the form of the
NMR time-domain signal generated from the isotro-
pic chemical shift interaction using the general for-
malism presented earlier. We will show that the result
obtained here is consistent with the expressions for
the time signal derived above (Eq. [164]).

Assume an ensemble of isolated spins-1
2

prepared
in a state of transverse magnetization, generated by a
(�/ 2)y pulse at the start of signal acquisition (t0 �
0), as discussed earlier. This corresponds to an initial

density operator proportional to Îx, which in turn may
be expressed in terms of Î� and Î� using Eq. [75],

'̂
0� � Îx [166]

�
1

2

Î� � Î�� [167]

or, formulated in the Dirac formalism,

'̂
0� �
1

2

������ � ������� [168]

We assume for simplicity that the spins are only
affected by the isotropic chemical shift interaction,
corresponding to the Hamiltonian

ĤCS,iso � �isoÎz [169]

�
1

2
�iso �1 0

0 �1� [170]

where we inserted the explicit matrix representation
of Îz (Eq. [77]). Because the Hamiltonian is diagonal
in the Zeeman basis, its eigenvalues are directly ex-
tracted as �� � �iso /2 and �� � ��iso /2. Hence, the
eigenequations are

ĤCS,iso��� �
1

2
�iso��� [171]

ĤCS,iso��� � �
1

2
�iso��� [172]

The eigenvalues are time independent, and the
expressions for the corresponding dynamic phases
)�(t, 0) and )�(t, 0) are easily calculated from Eq.
[143]:

)�
t, 0� � �)�
t, 0� �
1

2
�iso �

0

t

dt� [173]

�
1

2
�isot [174]

Applying Eq. [152] to form the dynamic phase dif-
ferences )��(t, 0) and )��(t, 0) gives

)��
t, 0� � )�
t, 0� � )�
t, 0� [175]

� ��isot [176]

Figure 11 A typical spectrum from (a) time-independent
and (b) time-periodic Hamiltonians, corresponding to the
case of one single molecular orientation (“single crystal”) in
static and rotating samples, respectively. Only one transition
of the spin system is shown, involving the Hamiltonian
eigenstates {�u�, �v�}. In the static case, the pair of eigen-
states generates a single spectral peak at the frequency �uv

(given by the difference between the eigenvalues of the
states: �uv � �v � �u) and with the amplitude auv (Eq.
[163]). In the rotating case, the spectrum corresponds to a
side-band manifold, centered at �uv

(0) � �v
(0) � �u

(0), and
with the expressions for the frequencies �uv

(k) and amplitudes
auv

(k) of the side bands given by Eqs. [212] and [211],
respectively. Two neighboring side bands are separated by
the rotational frequency �r. In this case, we assumed that
�uv � �uv

(0), but this does not generally hold, as explained
in the text.
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and

)��
t, 0� � �)��
t, 0� � �isot [177]

respectively.
Following reasoning identical to the previous sec-

tion, we obtain an equivalent expression to Eq. [151]:

'̂
t� �
1

2

exp
i)��
t, 0�������� [178]

�exp
i)��
t, 0���������

�
1

2

exp
�i�isot������� [179]

� exp
i�isot��������

According to Eq. [179], the density operator at the
time point t is given by two terms, each being a
product of an operator and a time-dependent expo-
nential function involving a dynamic phase. The
physical meaning of these terms is that the �1Q
coherence (represented by ������) oscillates at the
negative value of the isotropic chemical shift ��iso,
whereas the �1Q coherence (represented by ������)
oscillates at ��iso.

The time-domain signal originating from the time
evolution of this spin ensemble is obtained by insert-
ing the expression for the density operator together
with the observable Î� � ������ into Eq. [133]:

s
t� �
1

2 �
j��,�

� j�'̂Q̂� j� [180]

�
1

2 �
j��,�

� j� � �exp
�i�isot������� � ���������
Q̂

� exp
i�isot������� � ������
Q̂

� � � j� [181]

Again, the orthonormality condition of the basis states
proves useful: the first and second product within the
parentheses may be simplified as

������ � ������ � 0 [182]

and

������ � ������ � ������ [183]

respectively. Moreover, the sum over j collapses into
a single term

s
t� �
1

2
exp
i�isot�

� ���� � ������ � ���

�0

� ��� � ������ � ���

�1

� [184]

�
1

2
exp
i�isot� [185]

Note that all contributions from the �1QC operator
������ vanished; this is the mathematical consequence
of the fact that quadrature detection implies detection
of �1QC. Thus, in the present case, the signal only
contains one frequency: the isotropic chemical shift
�iso. Subsequent Fourier transformation produces an
NMR spectrum corresponding to a single peak at the
isotropic chemical shift frequency, as indicated in Fig.
11(a). Note that Eq. [185] conforms to Eq. [164] with
the following expressions for the frequency and am-
plitude: �uv � �iso and auv � 1/ 2.

This example represented probably the simplest
possible case. However, the calculations outlined in
the next section extend the present case by allowing
the incorporation of anisotropic chemical shift contri-
butions and heteronuclear dipolar interactions in mul-
tispin systems. In all these cases, the spin Hamiltonian
is dynamically inhomogeneous and, furthermore, di-
agonal in the Zeeman product basis. See Ref. (36 ) for
a similar calculation that additionally includes the
anisotropic chemical shift interaction.

Time-Periodic Self-Commuting
Hamiltonian

Here we carry out analogous calculations for a rotat-
ing sample as was done for the static case in the
previous section. The key steps of the procedure are
the same: (i) obtain the Hamiltonian and its eigenval-
ues; (ii) calculate the expression for the time-depen-
dent dynamic phase )uv(t, 0) originating from each
pair of eigenvalues; (iii) insert these results into the
expression for the time-domain signal, Eq. [159].

Hamiltonian. The time-dependent dynamically inho-
mogeneous Hamiltonian is given by a sum over all
NMR interactions:

Ĥ
t� � �
�

Ĥ�
t� � �
�

��
t�T̂� [186]
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where T̂� represents the spin part of the interaction
and the various spin operators mutually commute:
[T̂�j

, T̂�k
] � 0. If two operators commute, they share

the same eigenbasis and may both be brought into
diagonal form in that basis (although the eigenvalues
of the operators are generally different) (29). From
this it follows that all operators in the sum of Eq.
[186] are diagonal in the Hamiltonian eigenbasis.
Inserting the closure relation (Eq. [112]) both to the
left and to the right of Eq. [186] gives

Ĥ
t� � �
v�1

� �
�

��
t��v��v�

1̂

� T̂� � �v��v�

1̂

[187]

� �
v�1

� �
�

��
t��v�T̂��v� � �v��v� [188]

Note that �v�T̂��v� represents the matrix element
(T̂�)vv.

Hamiltonian Eigenvalues. Next we derive the ex-
plicit expressions for the Hamiltonian eigenvalues.
We may project out the uth Hamiltonian eigenvalue
by multiplying Eq. [188] to the left with the “bra” �u�
and to the right with the “ket” �u�, according to

�u
t� � �u�Ĥ
t��u�

� �u� � � �
v�1

� �
�

��
t��v�T̂��v� � �v��v�
 � �u�

[189]

After rearranging the terms and using the orthonor-
mality conditions of the Hamiltonian eigenstates, all
terms for which v * u vanish, and we obtain

�u
t� � �
�

��
t��u�T̂��u� [190]

As discussed earlier, the anisotropy frequency
��(t) of the spatial parts of the Hamiltonian are time
periodic in a sample rotating at the constant frequency
�r, Eq. [190] then implies that the Hamiltonian eig-
envalues are also periodic with the same period �r:

�u
t � �r� � �u
t� [191]

They may accordingly be expanded in a Fourier series:

�u
t� � �
m��2

2

�u

m�exp
im�rt� [192]

An explicit form of the Fourier components �u
(m) may

be obtained by inserting Eq. [104] into Eq. [190] as
follows:

�u
t� � �
�

�
m��2

2

��

m��u�T̂��u�

�u

m�

exp
im�rt� [193]

and equating the Fourier coefficients with those of Eq.
[192]. This is possible since a Fourier series is unique,
meaning that the Fourier coefficients of the two ex-
pansions must be equal, providing the following re-
lationship between the Fourier components of the
eigenvalues and those of the spatial tensors:

�u

m� � �

�

��

m��u�T̂��u� [194]

Thus, the eigenvalue Fourier component �u
(m) is given

by the sum over the products of the mth Fourier
component from each spatial tensor and the matrix
element of the corresponding spin tensor operator,
expressed in the eigenbasis of the Hamiltonian.

Dynamic Phase. Next we deal with finding an ex-
pression for the dynamic phase )uv(t, t0). To this
end, we separate the Hamiltonian eigenvalue in Eq.
[192] into time-independent and time-dependent parts
as follows:

�u
t� � �u

0� � �

m*0

�u

m�exp
im�rt� [195]

Under MAS conditions, �u
(0) only contains contribu-

tions from the isotropic parts of the spin interactions
(represented by zeroth rank tensors) whereas the com-
ponents �u

(m*0) contain only anisotropic parts (repre-
sented by components of second rank tensors). The
reason that �u

(0) is purely isotropic is that all potential
contributions from second rank tensors are zero: this
follows from Eq. [194] and the fact that d00

2 (�m) � 0
in the expression for ��

(0) (Eq. [105]). However, for
experiments conducted under off-MAS conditions,
the Euler angle �RL * �m and anisotropic contribu-
tions will appear in the frequency �u

(0). In the follow-
ing, we ignore such cases.

As discussed below, the separation between isotro-
pic and anisotropic contributions to the eigenvalues
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and, subsequently, the dynamic phase, will have im-
plications for the nature of the NMR time-domain
signals and frequency-domain spectra obtained from
rotating solids.

By combining Eqs. [143] and [195], we obtain the
following expression for the dynamic phase )u(t, t0):

)u
t, t0� � �
t0

t

dt��u
t�� [196]

� �
t0

t

dt��u

0�

�u

0�
t�t0�

� �
m*0

�u

m� �

t0

t

dt�exp
im�rt��

)�u
t, t0�

[197]

As a consequence of the separation of the Hamilto-
nian eigenvalues into time-independent and time-de-
pendent parts, the dynamic phase )u(t, t0) involves
the constant frequency �u

(0) and a time-dependent part
)�u(t, t0):

)u
t, t0� � �u

0�
t � t0� � )�u
t, t0� [198]

The integration of the exponential functions in )�u(t,
t0) are easily carried out,

�
t0

t

dt�exp
im�rt��

� 
im�r�
�1
exp
im�rt� � exp
im�rt0�� [199]

and the following expression for the phase )�u(t, t0) is
obtained:

)�u
t, t0� � 
i�r�
�1 �

m*0

m�1�u

m�

� (exp
im�rt� � exp
im�rt0�) [200]

Note that )�u(t, t0) only contains contributions from
the anisotropic parts of the spin interactions, because
Eq. [200] solely comprises components �u

(m) with
m * 0: these may only originate from the anisotropic
interaction parts expressed by second rank tensors. An
interpretation of the Fourier components and the cor-

responding dynamic phases for a single interaction �
is given in Fig. 12; the dynamic phase )u(t, t0) of the
Hamiltonian eigenstate �u� is a linear combination of
the dynamic phases of the individual interactions
)�(t, t0), with the corresponding Fourier compo-
nents �u

(m) and ��
(m) related through Eq. [194].

Next we demonstrate that )�u(t, t0) is periodic:

)�u
t � �r, t0� � )�u
t, t0� [201]

This may be verified from Eq. [200] by similar argu-
ments that were used to demonstrate that the interac-
tion frequency ��

(t) is periodic. From Eq. [200] we get

)�u
t � �r, t0� � 
i�r�
�1 �

m*0

m�1�u

m�

� 
exp
im�r
t � �r�� � exp
im�rt0�� [202]

Because the product of the rotational period and the
spinning frequency is given by �r�r � 2�, we find
exp{im�r(t � �r)} � exp{im�r t}exp{2im�} �

Figure 12 Diagrams illustrating each of the five Fourier
components ��

(m) (Eq. [105]) of a spatial tensor in a rotating
solid at a given time point t. Each circle corresponds to the
plane of complex numbers, and the vectors represent the
Fourier components. The component ��

(m) rotates at the
velocity m�r. Note that the magnitudes (i.e., the lengths of
the vectors) are equal for two components with opposite
signs of m, but they rotate in opposite directions. At t � 0,
all vectors are aligned along the real axis; and at every
integer multiple of the rotational period, they return to the
initial position. The angle )�

(m) represents the contribution
to the dynamic phase accumulated by the component ��

(m).
The dynamic phase of a Hamiltonian eigenstate )u

(m) (Eq.
[198]) is the sum of contributions from all interactions. The
m � 0 component ��

(0) is independent of time and stays
aligned along the real axis at all times. Its dynamic phase
may be visualized as the area beneath the line y � ��

(0) over
the interval 0 � t� � t.
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exp{im�r t}; Eq. [202] reduces to Eq. [200], imply-
ing that )�u(t � �r, t0) � )�u(t, t0).

Finally, we seek an explicit expression for the
dynamic phase difference )uv(t, t0). Inserting Eq.
[198] (which separates the isotropic and anisotropic
contributions of )uv(t, t0) into Eq. [152] gives

)uv
t, t0� � 
�v

0�
t � t0� � )�v
t, t0��

�
�u

0�
t � t0� � )�u
t, t0�� [203]

� �uv

0�
t � t0� � )�uv
t, t0� [204]

Analogous to the frequency �uv in Eq. [162], which is
relevant for the static solid, we define the frequency
�uv

(0) as the difference between the m � 0 Fourier
components of the Hamiltonian eigenvalues:

�uv

0� � �v


0� � �u

0� [205]

Moreover, an explicit expression for the phase differ-
ence )�uv(t, t0) � )�v(t, t0) � )�u(t, t0) is obtained
by using Eq. [200]:

)�uv
t, t0� � 
i�r�
�1 �

m*0

m�1
�v

m� � �u


m��

� 
exp
im�r t� � exp
im�r t0�� [206]

NMR Responses in Time and Frequency Domains.
Equipped with the expressions derived in the previous
subsections, we are prepared for the final step: eval-
uating the time signal, Eq. [159], in the case of a
rotating solid with a self-commuting Hamiltonian. As
before, the start of the NMR signal acquisition defines
the time origin, t0 � 0.

Exponentiating Eq. [204] provides the following
expression for exp{i)uv(t, 0)}:

exp
i)uv
t, 0�� � exp
i�uv

0�t�exp
i)�uv
t, 0�� [207]

It corresponds to a product of the exponentiated eig-
envalue difference �uv

(0) and the exponential of the
periodic anisotropic phase )�uv(t, t0). The former is
analogous to the factor exp{i�uv t} from the static
case; both functions comprise a single frequency.
Note, however, that the frequencies �uv and �uv

(0) are
in general not equal. The frequency �uv contains both
isotropic and anisotropic contributions from the spin
interactions, but in the MAS case we arranged that
�uv

(0) only comprises isotropic interactions.
The factor exp{i)�uv(t, 0)} has no counterpart in

the case of a static sample; in general, this function
comprises an infinite number of frequencies, all being

harmonics of the rotational frequency �r. This may be
realized by Fourier expanding the function
exp{i)�uv(t, 0)}: as expressed by Eq. [27], the com-
plex exponentials of periodic functions (such as the
dynamic phase) may be written as a Fourier series,
comprising an infinite number of coefficients:

exp
i)�uv
t, 0�� � �
k���

�

cuv

k�exp
ik�r t� [208]

The Fourier coefficient cuv
(k) is a function of the Ham-

iltonian eigenvalue difference �v
(m) � �u

(m) and hence
also depends on the various spatial tensor compo-
nents; this is realized from the relationships between
the dynamic phase, the Hamiltonian eigenvalues, and
the interaction parameters, as follows by combining
Eqs. [105], [194], and [206]. The coefficients cuv

(k)

fulfill a normalization condition ¥k �cuv
(k)� � 1 and

may be calculated by Fourier transformation of the
function exp{i)�uv(t, 0)}. We will discuss this fur-
ther in following articles.

Finally, by inserting Eqs. [207] and [208] into the
general expression for the signal, Eq. [159], we obtain

s
t� � �
u,v�1

�

�u�'̂
0��v��v�Q̂�u�exp
i�uv

0�t� [209]

� �
k���

�

cuv

k�exp
ik�r t�

� �
u,v�1

� �
k���

�

auv

k�exp
i�uv


k�t� [210]

where the amplitudes are given by

auv

k� � �u�'̂
0��v��v�Q̂�u�cuv


k� � auvcuv

k� [211]

and the frequencies by

�uv

k� � �uv


0� � k�r [212]

After Fourier transformation of the time signal, the
spectrum takes the following form:

S
�� � �
u,v�1

� �
k���

�

auv

k�	
�, �uv


k�� [213]

Consequently, the spectrum is the sum of contribu-
tions from each pair of Hamiltonian eigenstates �u�
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and �v�, each producing a set of spinning side bands
due to the periodic sample rotation. The side-band
manifold is centered at a “fundamental frequency”
�uv

(0) and associated with a frequency separation �r

between neighboring peaks. This is illustrated in Fig.
11(b).

The origin of the side bands in the rotating case is
the periodic exponential function exp{i)�uv(t, 0)}.
Through Eq. [208] it was shown to correspond to a
sum of functions exp{ik�rt}, each oscillating at a
harmonic k�r of the spinning frequency. Each of
these contributes one spinning side band to the man-
ifold. However, although the number of side bands is
in theory infinite, in practice their amplitudes, auv

(k) �
auvcuv

(k), tend to zero for large side-band orders �k�.
This is because the Fourier components cuv

(k) get
smaller as the side-band index �k� increases: the num-
ber of side bands of significant intensity roughly
depends on the magnitude of the interaction relative to
the spinning frequency, that is, on the ratio ���/�r�
(27 ). The larger the ratio, the larger the number of
side bands in the spectrum. This is seen, for example,
from the experimental spectra in Fig. 1(b–d), which
were recorded at different spinning frequencies. In the
case of several interactions, the ratio involving the
sum over all interaction frequencies, �+ � ¥� ��,
roughly dictates the number of side bands.

Note that spin evolution under a self-commuting
Hamiltonian of the form of Eq. [186] corresponds to
an NMR spectrum being a sum of a set of “subspec-
tra,” each generated independently from each interac-
tion. For example, consider an isolated 13CO1H seg-
ment in an organic molecule under MAS. The 13C
spectrum corresponds to a side band manifold, with
each side band amplitude arising from the combined
effects of the heteronuclear dipolar coupling and the
13C chemical shift anisotropy. In a following article
we demonstrate how such a spectrum may be calcu-
lated numerically.

The derivations in this section assumed dynami-
cally inhomogeneous Hamiltonians under sample
spinning conditions, but the form of the spectrum
given in Eq. [213] holds in the general case of spin
systems evolving under any time-periodic Hamilto-
nian, as discussed in Refs. (18, 20, 39–41). The
appearance of a side-band manifold is a consequence
of spin evolution under a time-periodic Hamiltonian,
regardless of whether this is homogeneous or inho-
mogeneous. The major difference between these cases
is, however, that for dynamically homogeneous Ham-
iltonians, the total NMR spectrum generated from
several interactions is not expressible as a superposi-
tion of the individual spectra obtained from each
interaction. This is attributable to interference be-

tween the various noncommuting terms in the total
Hamiltonian (as discussed on page 141).

We summarize by comparing the expressions for
the NMR time-domain signal and spectrum obtained
from a time-independent Hamiltonian (Eqs. [164] and
[165]) with those from a periodic Hamiltonian (Eqs.
[210] and [213]): in the former case, each pair of
states {�u�, �v�} produces a single spectral peak [Fig.
11(a)], whereas in the latter case each state pair is
associated with a manifold of spectral peaks [Fig.
11(b)]. Each amplitude auv

(k) is the product of auv

(from the time-independent case) and the Fourier
component cuv

(k), as expressed by Eq. [211]. The sum
over all side-band amplitudes auv

(k) within a manifold
equals auv.

SUMMARY

We have discussed a framework for calculating the
NMR time-domain signal and frequency-domain
spectrum generated from a single molecular orienta-
tion in solid-state NMR. The key steps are the fol-
lowing:

1. Construct the Hamiltonian for the spin system.
This is given as a product of a spatial tensor and
a spin operator, each represented by a compo-
nent of an irreducible spherical tensor. We
showed how the spatial tensor may be trans-
formed between different reference frames and
how the matrix representation for the spin op-
erator may be calculated.

2. The density operator carries the information
about the state of an ensemble of nuclear spin
systems. The Hamiltonian will cause the den-
sity operator to change throughout the NMR
experiment. The fundamental problem in spin
dynamics calculations is solving the Schröd-
inger equation, which dictates how the spin
density operator, and hence the nuclear spins,
evolves in time; this results in an operator called
the propagator. In practice, the propagator usu-
ally has to be estimated numerically. It may
then be used to calculate the spin density oper-
ator at any time point during the NMR experi-
ment.

3. The time-domain signal s(t) at a given time
point corresponds to the expectation value of an
observable operator. It is calculated as the trace
of the product of the observable operator and
the density operator at the given time point.

By repeating the above steps for a series of time
points, one obtains the time-domain signal “traject-
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ory” s(t). The corresponding NMR spectrum is cal-
culated by Fourier transformation of s(t). We derived
the formal equations describing these steps and ex-
amined in particular detail the NMR response ob-
tained if the spin Hamiltonian is dynamically inho-
mogeneous (i.e., self-commuting at all times during
the NMR signal acquisition). This allowed the spin
dynamics to be solved exactly. Finally, the form of the
spectrum obtained from a single molecular orientation
in a static and rotating sample were examined.

The next article will outline how this formalism is
converted into computer code in order to numerically
calculate NMR signals.
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APPENDIX A

We prove (i) the symmetry of the Fourier components
��

(m) upon sign reversal of m (Eq. [106]), (ii) the
expression for the spatial tensor component ��(t) �
[A20

� ]L (Eq. [107]), and (iii) that the latter is real
valued. These properties follow from the relationship
of the irreducible spherical tensor components (Eq.
[51]) and the following symmetries of the Wigner
functions (28 ):

dm�m
l 
�� � 
�1�m��md�m��m

l 
�� [A.1]

Dm�m
l 
�� � 
�1�m�m�D�m��m

l 
��* [A.2]

These equations may be checked explicitly using the
Wigner functions given in Table 1. Substituting them
into the the expression for ��

(�m) (Eq. [105]) gives

��

�m� � �

m���2

2

�A2m�
� �M � Dm��m

2 
�MR�


�1��m�m�D�m�m
2 
�MR�*

� d�m0
2 
�m�


�1��mdm0
2 
�m�

[A.3]

� �
m���2

2


�1��m��A2m�
� �MD�m�m

2 
�MR�*dm0
2 
�m�

[A.4]

where the two factors (�1)�m�m� and (�1)�m were
combined into


�1��m � 
�1��m�m� � 
�1��2m�m� � 
�1��m�

[A.5]

and the last equality holds for integral values of m.
After a change of index n � �m�, the expression for
��

(�m) is

��

�m� � �

n��2

2


�1�n�A2�n
� �MDnm

2 
�MR�*dm0
2 
�m� [A.6]

From Eq. [51] it follows that (�1)n[A2�n
� ]M �

([A2n
� ]M)*. Because the reduced Wigner functions are

real numbers, that is, dm0
2 (�m) � dm0

2 (�m)*, Eq. [106]
follows by using standard properties of complex num-
bers:

��

�m� � �

n��2

2


�1�n�A2�n
� �M


�A2n
� �M�*

� Dnm
2 
�MR�* � dm0

2 
�m�*

[A.7]

� � �
n��2

2

�A2n
� �MDnm

2 
�MR�dm0
2 
�m��*

[A.8]

� ��

m�* [A.9]

Once Eq. [106] is established, it is easy to show that
��(t) is real: we rearrange the sum in Eq. [104] as
follows:

��
t� � �
m��2

2

��

m�exp
im�r t� [A.10]

� ��

0� � �

m�1

2

��

m�exp
im�r t�

���
(�m)exp
�im�r t� [A.11]

Using Eq. [106], as well as exp{�im�r t} �
exp{im�r t}*, we obtain
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��
t� � ��

0� � �

m�1

2

��

m�exp
im�r t�

� ��

m�*exp
im�r t�* [A.12]

Note that for each value of m, we have a sum of a
complex number ��

(m)exp{im�r t} and its complex
conjugate (��

(m)exp{im�r t})*; this equals 2 Re(��
(m)

exp{im�r t}). Because it directly follows from Eq.
[106] that ��

(0) is real, Eq. [225] corresponds to a
sum of three real numbers:

��
t� � ��

0� � 2 �

m�1

2

Re
��

m�exp
im�rt�� [A.13]

Finally, Eq. [107] is established by evaluating the real
part of the product ��

(m)exp{im�r t}, resulting in

��
t� � ��

0� � 2 �

m�1

2

Re
��

m��cos
m�r t�

� Im
��

m��sin
m�r t� [A.14]

APPENDIX B

Following Ref. (36), we show that in the Hamiltonian
eigenbasis, the propagator may be expressed as a sum
of products of projection operators and exponentials
of dynamic phases (Eq. [145]). Here we use the short-
hand notation )u � )u(t, t0) and insert the expres-
sion for the dynamic phase (Eq. [143]) into Eq. [142]:

Û
t, t0� � exp��i �
u�1

�

)u�u��u�
 [B.1]

According to Eq. [13], the propagator may be ex-
pressed as the following Taylor series:

Û
t, t0� � 1̂ � ��i �
u�1

�

)u�u��u��
�

1

2! ��i �
u�1

�

)u�u��u��2

� · · · �

1

N! ��i �
u�1

�

)u�u��u��N

� · · · [B.2]

We focus on the second-order term. It may be for-
mally expressed as a sum over �2 products of pro-
jection operators according to

1

2! ��i �
u�1

�

)u�u��u��2

�
1

2! �
u,v�1

�

)u)v�u��u� � �v��v�

[B.3]

This appears at first sight to be a very complex ex-
pression. However, by using the properties of “bras”
and “kets” and considering that the Hamiltonian ei-
genstates are orthonormal, each operator product on
the right-hand side may be evaluated as

�u��u� � �v��v� � �u� � �u�v�
	
u, v�

� �v� � �u��v� � 	
u, v�

[B.4]

The result is that (�u��u�)2 � �u��u�, while all prod-
ucts between different operators vanish. This may be
extrapolated to obtain the following expression for the
nth-order term in Eq. [B.2]:

1

N! ��i �
u�1

�

)u�u��u��N

�
1

N! �
u�1

�


�i)u�
N�u��u�

[B.5]

It follows that all terms of index u in Eq. [B.2] are
proportional to the projection operator �u��u�; this
makes the following factorization possible:

Û
t, t0� � �
u�1

� �1̂ � 
�i)u� �
1

2!

�i)u�

2

� · · ·�
1

N!

�i)u�

N � · · ·
�u��u� [B.6]

Inspection of each term with index u in this expres-
sion within braces reveals that it corresponds to the
Taylor expansion of the exponential function of the
number (�i)u) (see Eq. [12]). Hence, we may re-
place the expression within braces by exp{�i)u},
whereupon Eq. [B.6] casts as

Û
t, t0� � �
u�1

�

exp
�i)u��u��u� [B.7]

which is the desired result, Eq. [145].
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